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Abstract 

This paper supports countries in understanding the potential impact of climate-related natural hazards by 

assessing the exposure of people and assets to these hazards. It develops indicators of climate-related 

hazards and exposures for seven hazard types (extreme temperature, extreme precipitation, drought, 

wildfire, wind threats, river flooding and coastal flooding) and four exposure variables (cropland, forests, 

urban areas and population density). The paper presents the associated methodologies and discusses the 

global geospatial datasets used to construct the indicators. It shows that it is possible to develop exposure 

indicators for climate-related hazards with a global geographic coverage at the national and subnational 

levels. The results, presented for 52 IPAC countries, suggest that all countries are exposed to one or more 

climate-related natural hazards, but with significant differences in the occurrence and intensity of such 

hazards. The empirical evidence presented here points to the urgency to take strong climate change 

mitigation measures. It also highlights the need to accelerate efforts towards the global goal on adaptation 

to strengthen resilience and reduce vulnerability to climate change in the context of the Paris Agreement.  

Keywords: adaptation, climate change, climate-related hazards, earth observation, exposure, geospatial, 

natural hazards, resilience 

JEL Classification: Q15, Q2, Q54, R11 

 

Résumé 

Le présent document vise à aider les pays à mesurer les effets potentiels des aléas climatiques naturels en 

évaluant l’exposition des personnes et des ressources à ces aléas. Sept types d'aléa climatique naturel 

(températures extrêmes, précipitations extrêmes, sécheresses, incendies incontrôlés, vents violents, 

inondations fluviales et submersions marines) et quatre variables d’exposition (terres labourables, forêts, 

zones bâties et densité de population) permettent de développer les indicateurs idoines. Les principes 

méthodologiques et les ensembles de données géo-spatiales mondiales qui ont servi à leur élaboration sont 

également exposés. Il est donc possible de mettre au point des indicateurs d’exposition aux aléas 

climatiques couvrant une échelle mondiale au niveau national et infranational. Les résultats ainsi obtenus 

pour 52 pays participants au Programme international pour l’action sur le climat (IPAC) montrent que tous 

les pays sont exposés à un ou plusieurs aléas naturels climatiques, mais l’intensité et la fréquence sont très 

variables. Les données empiriques présentées ici soulignent l’urgence de prendre des mesures drastiques 

pour atténuer les effets du dérèglement climatique, de même que la nécessité d'accélérer le pas vers 

l’objectif mondial en matière d’adaptation, de façon à renforcer la résilience et à réduire la vulnérabilité au 

changement climatique dans le contexte de l’Accord de Paris. 

Mots-clés : adaptation, changement climatique, aléas climatiques, observation de la Terre, exposition, géo-

spatial, aléas naturels, risques naturels, résilience 

Classification JEL : Q15, Q2, Q54, R11 
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Executive summary 

This paper develops indicators that support countries in understanding the impact of climate-related hazards 

by assessing the exposure of people and assets to these hazards. It focuses on seven hazard types: (1) 

extreme temperature, (2) extreme precipitation, (3) drought, (4) wildfire, (5) wind threats, (6) river flooding 

and (7) coastal flooding. These are key natural hazards, influenced by climate change, with important 

impacts on people and assets. They are chosen for their relevance after an extensive qualitative review of 

available data sources. Four exposure variables are selected, including (1) built-up areas, (2) croplands, (3) 

forests and (4) population density, to assess the impact of each climate-related hazard on one or more of 

these variables. Indicators are calculated for all countries with time series from 1979 to 2021 depending on 

data availability (Table 1). For ease of presentation, empirical results in this paper are restricted to the 52 

countries covered by the International Programme for Action on Climate (IPAC). The full dataset including 

all countries in the world will be available on OECD.Stat for public access. A selection of indicators will be 

visualised on the IPAC Climate Action Dashboard and the IEA Weather for Energy Tracker. 

The contributions of this paper are twofold. First, despite a growing availability of data from earth observation 

on climate-related hazards there is a dearth of readily available indicators at the national and subnational 

levels. This paper responds to demands for internationally comparable indicators suitable for analyses with 

a global geographic coverage, over long time periods, and with timely updates. Second, the underlying 

geospatial datasets are often complex, requiring specific expertise for meaningful analysis, and involve large 

volumes of data that require long processing times. This paper facilitates the use of such data by 

summarising the underlying information into indicators accessible to non-expert audiences and suitable to 

support policy analyses and government decision making. 

The 2020 technical report developed by the European Environment Agency on compiling climate-related 

hazard indices was used as a starting point. Based on this, and other key resources, such as the 2020 

technical report from the United Nations Office for Disaster Risk Reduction on hazard definition and 

classification, it examines in detail data sources to construct national and subnational exposure indicators 

for climate-related natural hazards, each with a risk-specific methodology. The methodologies are informed 

by standards from the World Meteorological Organization, the US National Oceanic and Atmospheric 

Administration, latest research and standards developed by well-recognised organisations, and builds on 

international frameworks for assessing climate-related hazards. This paper ensures, to the extent possible, 

coherence with national and international data sources and guidelines for assessing climate-related hazards. 

The paper shows that it is possible to develop national and subnational hazard and exposure indicators for 

common climate-related hazards. It provides evidence that across countries there is considerable exposure 

of built-up areas, croplands, forests and the population to climate-related hazards. For example, a high 

proportion of the population in most IPAC countries is exposed to serious extreme heat conditions, which is 

of major concern because climate change is likely to further increase unusually warm temperatures. 

Meanwhile, the majority of burned land area globally occurs in a subset of IPAC countries over the past five 

years, exposing forests and the population to wildfires. These results suggest that considerable differences 

exist across, and within, countries in terms of the type of climate-related hazards and of their intensities. In 

fact, all countries experience one or more of these hazards and the exposure varies depending on where 

people and assets are located. It further highlights the interconnectedness of climate-related hazards, which 

may reinforce or undermine one another, and may lead to over- or under-estimations of the exposure of 

people and assets to climate-related hazards. 

http://stats.oecd.org/Index.aspx?DataSetCode=EXT_TEMP
https://www.oecd.org/climate-action/ipac/dashboard
https://www.iea.org/data-and-statistics/data-tools/weather-for-energy-tracker
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This remains a work in progress. For example, data sources for river and coastal flooding are based on 

predicted (ex-ante) hazard maps that are not updated annually. New data sources or other techniques for 

analysing river or coastal flooding may allow for improvements to these indicators in the future.  

Table 1. Overview exposure indicators developed in this paper 

 

Why?  Temperature extremes at both ends of the spectrum can impact human health and economic activities,  
while they are worsening due to climate change. 

Indicators  1. Percentage of population exposed to n number of hot days 

  2. Percentage of population exposed to n number of tropical nights 

  3. Percentage of population exposed to n number of days identified as a hot day and tropical night 

  4. Population-weighted average of the number of days with heat stress 

  5. Percentage of population exposed to n number of icing days 

 

Why?   Precipitation extremes can cause sudden flooding, impacting agriculture and leading to a loss of  
  agricultural yield, and is expected to worsen due to climate change. 

Indicators  6. Percentage of cropland exposed to n number of days with above-average precipitation amounts 

 

Why?   Drought has far-reaching socio-economic impacts, particularly on agriculture, resulting in a loss of  
  agricultural yield, and is influenced by climate change. 

Indicators  7. Average cropland soil moisture anomaly 

 

Why?   Wildfire threatens people’s lives and wellbeing both directly and indirectly, and can also occur more frequently 
  and intensively because of climate change. 

Indicators  8. Percentage of population located in areas at risk of burning 

  9. Percentage of forested areas at risk of burning 

 

Why?   Wind threats are common hazards to humans directly through flying debris and falling trees or damage to 
  built-up areas, and are expected to worsen due to climate change. 

Indicators  10. Percentage of population exposed to violent wind gusts 

  11. Percentage of built-up area exposed to violent wind gusts 

  12. Percentage of population exposed to cyclone wind threats with different return periods 

  13. Percentage of built-up area exposed to cyclone wind threats with different return periods 

 

Why?   River flooding can cause significant economic losses, impacting the population, built-up areas or  
  infrastructure, and is expected to worsen due to climate change. 

Indicators  14. Percentage of population exposed to river flooding with different return periods 

  15. Percentage of built-up area exposed to river flooding with different return periods 

  16. Percentage of cropland exposed to river flooding with different return periods 

 

Why?  Coastal flooding threatens coastal regions and communities and is expected to worsen due to climate  
 change. 

Indicators  17. Percentage of population exposed to coastal flooding with different return periods 

  18. Percentage of built-up area exposed to coastal flooding with different return periods 

  19. Percentage of cropland exposed to coastal flooding with different return periods 

Note: A return period is the average or estimated time that a specific climate-related hazard is likely to recur. 

      Extreme temperature 

      Extreme precipitation 

      Drought 

      Wildfire 

      Wind threats 

  River flooding 

 Coastal flooding 
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1 Introduction 

Climate-related natural hazards impact societies around the world and climate change poses a growing 

threat by influencing the intensity and, in some cases, the frequency of occurrence of such hazards (IPCC, 

2021[1]). Worldwide, approximately 3.3 to 3.6 billion people live in contexts that are highly vulnerable to 

climate change (IPCC, 2022[2]). For example, 1.7 million deaths worldwide were linked to extreme heat and 

cold in 2019 alone and 356,000 of these deaths were related to heat stress (Burkart et al., 2021[3]). 

Meanwhile, natural disasters caused an estimated USD 280 billion of global losses in 2021, representing 

approximately 0.29% of global Gross Domestic Product (GDP) (Munich RE, 2022[4]). Considering the severe 

socio-economic losses on people’s livelihoods, better understanding which countries, regions and 

communities are more, or less, affected by past climate-related natural hazards is important. 

This paper proposes 19 national and subnational exposure indicators1 for observed climate-related hazards 

before and after the event occurred (i.e. ex-ante and ex-post) based on a review of available and relevant 

data sources (Table 1). The indicators cover sudden onset climate-related hazards that are relevant around 

the world (e.g. extreme temperature or precipitation) and additional indicators for slow onset climate-related 

hazards (e.g. changes in mean temperature) when suitable global datasets could be identified. The 

presentation of the results covers 52 countries, corresponding to the current geographic coverage of the 

International Programme for Action on Climate (IPAC)2 and has the following objectives: 

 to provide an overview of past trends and the current situation of key representative climate-related 

hazards with high spatio-temporal coverage across IPAC countries; 

 to support IPAC countries with the development and application of national and subnational 

indicators for climate-related hazards with adaptation relevance; 

 to inform OECD measurement efforts and policy analyses and make information on climate-related 

hazards more accessible to non-specialists. 

Results show that a high proportion of the population in most IPAC countries is exposed to serious extreme 

heat and cold conditions, and that climate change is likely to increase above-average temperatures, 

worsening extreme heat conditions in the future. Furthermore, only a small subset of IPAC countries is 

contributing to the majority of burning areas over the past five years. For example, 15% of fire events globally 

occurred in four IPAC countries alone, i.e. Argentina, Australia, Brazil and India. This paper confirms that it 

is possible to develop exposure indicators for climate-related hazards at the national and subnational levels 

using global data sources with high spatio-temporal resolution. This paper shows that all countries 

experience one or more climate-related hazards and that significant differences exist among countries in 

exposure to different climate-related natural hazards with varying degrees of intensities.  

                                                
1 National and subnational indicators are presented by (i) country, i.e. the FAO Global Administrative Unit Layer (GAUL) 

(2015) level 0 political boundary data source is used, and (ii) large region, i.e. territorial level 2 or TL2 based on the 

OECD territorial classification or, when unavailable, a corresponding level using FAO GAUL. 

2 The 52 countries include 38 OECD member countries, the European Union (EU27), Malta, 6 OECD accession 

candidates (Argentina, Brazil, Bulgaria, Croatia, Peru, Romania), 5 key partners (Brazil, People’s Republic of China 

(hereafter ‘China’), India, Indonesia, South Africa) and other G20 countries (Russian Federation, Saudi Arabia). 

https://www.oecd.org/about/document/ratification-oecd-convention.htm
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2 Conceptual framework for measuring 

climate-related risks 

2.1. Climate-related hazards 

Anthropogenic climate change modifies weather and climate extremes (IPCC, 2021[1]) (Spinoni, Naumann 

and Vogt, 2017[5]), causing an increase in property damage and loss of human life, and impacting biodiversity 

and ecosystems more broadly around the world (CRED, 2019[6]). Countries are faced with a growing 

challenge to manage the risks from climate change and increased hazard occurrence, highlighting the need 

to use coherent terminology across domains (OECD, 2020[7]).  

Based on the definition of ‘hazard’ adopted by the United Nations General Assembly, this paper defines 

climate-related hazards as  

“a potentially damaging climate-related physical event, phenomenon, or human activity that may cause the loss 
of life or injury, property damage, social and economic disruption or environmental degradation” (UNDRR, 
2020[8]).  

Climate-related hazards can include both sudden onset hazards (i.e. event-driven hazards such as 

heatwaves or cyclones) and slow onset hazards (i.e. long-term changes in the mean and variability of climate 

patterns such as mean precipitation or temperature). Understanding climate-related hazards can inform and 

support countries’ efforts to mitigate and adapt to climate change. Developing a representative set of such 

climate-related hazard indicators is a key component to achieve this. 

The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) general framework 

on climate-related hazard indices introduces the concept of 28 Climatic Impact Drivers (CID) grouped into 

six categories: (i) Heat and cold, (ii) Wet and dry, (iii) Wind, (iv) Snow and ice, (v) Coastal and (vi) Oceanic 

(IPCC, 2021[1]). Similarly, the European Topic Centre on Climate Change Impacts, Vulnerability and 

Adaptation (ETC/CCA) includes the development of a compact set of 32 climate-related hazard indices for 

Europe, which includes the same six main categories as the overarching structure for classifying climate-

related hazard indices (ETC-CCA, 2020[9]). 

This paper develops a set of climate-related hazard indicators, drawing on relevant literature and related 

international work. It prioritises the development of exposure indicators in a subset of four key categories: (i) 

heat and cold, (ii) wet and dry, (iii) wind and (iv) coastal. 

2.2. Defining a hazard’s risk 

Natural climate variability and anthropogenic climate change increase risks attributed to climate-related 

hazards, influencing the frequency, intensity, extent and duration of extreme weather and climate events 

(IPCC, 2022[2]). Different conceptual models for defining risk have been reviewed. The IPCC considers the 

climate-related hazard, exposure and vulnerability as the key dimensions of disaster risk (see Box 1) (IPCC, 

2022[2]), while the Index for Risk Management (INFORM) model from the European Commission expands 

on this with a fourth dimension on coping capacity (Marin-Ferrer, Vernaccini and Poljansek, 2017[10]). The 
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coping capacity is defined as the ability of exposed individuals, systems or institutions to adjust or cope with 

potential impacts from climate change (Marin-Ferrer, Vernaccini and Poljansek, 2017[10]). For example, 

specific policies can result in a potential positive or negative outcome to climate-related hazards independent 

from a populations’ vulnerability to these hazards (Simpson et al., 2021[11]). Similarly to the INFORM model, 

the Sendai Framework for Disaster Risk Reduction considers that disaster risk management should include 

all dimensions of vulnerability, capacity, exposure and hazard (UNDRR, 2015[12]). 

Box 1. Conceptual illustration and definitions of key risk dimensions linked to climate-related impacts 

 

Source: (IPCC, 2014[13]). A more elaborate version of this figure is available in AR6 Working Group II (IPCC, 2022[2]). 

Hazard: the potential occurrence of a natural or human-induced physical event or trend or physical 

impact that may cause loss of life, injury, or other health impacts, as well as damage and loss to 

property, infrastructure, livelihoods, service provision, ecosystems, and environmental resources. 

Exposure: the presence of people or assets in areas prone to climate-related hazards (e.g. population 

density, valuable ecosystems). 

Vulnerability: the conditions determined by physical, social, economic and environmental factors or 

processes, which increase the susceptibility of a community to the impact of climate-related hazards 

(e.g. an individual’s or household’s socio-economic status, particular vulnerable groups in society) 

(ISDR, 2005[14]). 

All of these conceptual models imply integrating the physical and socio-economic drivers that influence the 

risk from climate-related hazards. Making meaningful predictions of the risks associated with climate-related 

hazards requires accounting for as many, if not all, key dimensions possible depending on data availability 

(see Box 1). However, the hazard and exposure dimensions are often treated differently from the vulnerability 

dimension. While components within the hazard and exposure dimensions are considered hazard-

dependent factors, the vulnerability dimension is considered hazard-independent (Marin-Ferrer, Vernaccini 

and Poljansek, 2017[10]).  
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This paper focuses on hazard-dependent factors (i.e. the hazard and exposure) to develop national and 

subnational exposure indicators for climate-related hazards. Measuring all dimensions that encompass risk 

is difficult because of data limitations, particularly on a global scale. For example, there are no commonly 

used data sources for assessing vulnerability globally. The Notre Dame-Global Adaptation Index (ND-GAIN) 

shows a country’s current vulnerability to climate disruptions (Chen et al., 2015[15]). However, the ND-GAIN 

has no subnational spatial resolution, making it difficult to use in combination with data sources with high 

spatio-temporal resolution. Similarly, the Global Human Settlement Layer (GHSL) population grids, 

developed by the European Commission Joint Research Centre, provide population counts with a 250 m 

spatial resolution. However, the GHSL population grids do not have demographic data to identify, for 

example, vulnerable groups such as elderly. Due to the lack of global data sources to assess vulnerability 

with a high spatio-temporal resolution, this paper focuses on identifying the hazard and exposure dimension. 
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3 Data and methods 

3.1. Identification of robust data sources 

This paper identifies data sources for developing national and subnational hazard and exposure indicators 

for climate-related hazards by searching variables, indices, indicators and larger databases from a variety of 

organisations such as the Copernicus Climate Data Store (CDS), the National Aeronautics and Space 

Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA), among others. Annex B 

provides a description of the main data sources reviewed. 

A quality review was conducted to prioritise the most suitable data sources, based on a set of criteria, 

including assessing the geographic and temporal resolution of a data source, its feasibility for computational 

analysis and its relevance for the purpose of this work (Table 2).  

Table 2. Criteria to evaluate the suitability of underlying datasets 

Criterion High Medium Low 

Computational efficiency No computation needed Automated computations needed Heavy computations needed 

Computational feasibility 
Essential climate variable requiring 

simple calculations 
Multiple input variables required 

Many input variables required or 

heavy statistical computing 

Geographic coverage Complete global data coverage Data available for most countries 
Data available only for certain 

countries 

Geographic resolution Gridded data Station data or country-level data Point data 

Temporal coverage 

Complete data coverage for the 
period 2018-2020, incl. historical 

data where relevant 

Data coverage for all countries but 

missing most recent year 

Data coverage missing for multiple 

years 

Temporal resolution Daily data Monthly data No daily or monthly data 

 

The paper identifies good quality data sources and classifies these within four broad categories: (i) heat and 

cold, (ii) wet and dry, (iii) wind and (iv) coastal, based on the suitability of data sources (Table 3). A variety 

of other data sources of lower quality were not retained such as lightning or snowfall because (i) the domain 

or subdomain does not have any global data sources relevant to this analysis or (ii) the identified data 

sources for this domain or subdomain are not considered appropriate for developing a national exposure 

indicator for the respective climate-related hazard. However, the paper does not exclude the possibility to 

add climate-related hazards to follow-up OECD work in other broad categories such as snow and ice or 

oceanic. Annex C provides more details on the excluded domains or subdomains. 
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Table 3. Review of relevant data sources on climate-related hazards 

Greyed-out rows are data sources selected for developing national and subnational exposure indicators 

Data source Description Geographic resolution Temporal resolution Update frequency 

Temperature 

Copernicus  
Climate Data Store (CDS) 

ERA5 hourly data on single 

levels (ERA5)  

Mean, minimum, maximum 

temperature 

0.25° resolution (~27.75 

km) per grid cell 
Daily: 1979 to present 

Quarterly updates (every 

three months) 

Thermal comfort indices 
derived from ERA5 

reanalysis ERA5-HEAT 

Universal Thermal Comfort 

Index (UTCI) 
0.25° (~27.75 km) Hourly: 1979 to present 

Near real time (2.5 

months lag) 

Berkeley Earth Surface 

Temperatures (BEST)  

Mean, minimum and 

maximum temperature 

1.0° resolution (~111 km) 

per grid cell 
Daily: 1880 – 2019 NA 

Precipitation 

Copernicus CDS 
ERA5 hourly data on single 

levels (ERA5)  
Total precipitation 

0.25° resolution (~27.75 

km) per grid cell 
Daily: 1979 to present 

Quarterly updates (every 

three months) 

NASA/JAXA 

Global Satellite Mapping of 

Precipitation (GPM) IMERG 

Precipitation estimates (mm 

h-1) 
0.1° resolution (~11 km) 

Hourly: 2014 to present 

3-hourly: 2000 to present 

Daily: 2000 to present 

Late run: ~14 hours 

Final run: ~3.5 months 

JAXA/NASA 

Global Satellite Mapping of 

Precipitation (GSMaP) 

Precipitation estimates (mm 

h-1) 
0.1° resolution (~11 km) 

Hourly, 3-hourly and daily: 

2014 to present 

Standard product: 3 days 

Near-real-time product: 

4 hours 

Copernicus 

Global Precipitation 

Climatology Project (GPCP) 

Mean precipitation (mm 

day-1) 
1.0° resolution (~111 km) 

Daily: 1996 to present 

Monthly: 1979 to present 
Quarterly 

NOAA 

CMORPH Climate Data 

Record 

Precipitation estimates 

8 km resolution (30-min 
data), 0.25° resolution 
(hourly and daily data) 

(~27.75 km) 

30-min, hourly and daily: 

2002 to present 
18 hours past real-time 

Drought 

Copernicus CDS ERA5-
Land monthly averaged 

data 

Volume of water in soil 

layer 0-7 cm 
0.1° resolution (~11 km) Monthly: 1950 to present Near real time  

Soil moisture gridded data 

(Copernicus CDS) 

Volumetric surface soil 

moisture 

0.25° resolution (~27.75 

km) 
Monthly: 1978 to present Near real time 

NOAA 

 

CMORPH Daily 
Standardised Precipitation 

Index (SPI) 

0.25° resolution (~27.75 

km) 

Half-hourly and daily: 

2002 to present 
18 hours past real-time 

GPCC Precipitation 

anomalies 
5.0° resolution (~555 km) 

Monthly: 1900 to present 

Base period: 1961 – 1990 
Same as above 

MERRA2 Evaporative 
Demand Drought Index 

(EDDI) 
0.125° resolution (~15km) Daily: 1980 to present 5 days past real-time 

European Commission 
Joint Research Centre 

(JRC) 

Risk of Drought Impacts for 

Agriculture (RDrl-Agri) 
1.0° resolution (~111 km) Yearly: 2013 to present ~14 days past real-time 

Global Precipitation 

Climatology Centre 
Global Drought Index 1.0° resolution (~111 km) 

Monthly: 2013 to present 

Base period: 1961 – 1990 

Updated to the most 

recent full month 

Climatology and Climate 

Services Laboratory 

Standardised Precipitation 
and Evapotranspiration 

Index (SPEI) 
0.5° resolution (~55 km) Monthly: 1901 - 2018 

No updates after 

December 2018 

Wildfire 

Global Fire Emissions 

database 

Burned area 

Fire events 

Vector shapefiles 

(underlying data: 500 m) 
Monthly: 1997 to 2021 Updated annually 

MODIS/Terra and Aqua 

MCD64A1 product 
Burned area 500 m Monthly: 2000 to present Updated monthly 
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Copernicus 
Danger rating 

Fire danger index 

0.25° resolution (~27.75 

km) 
Daily: 1979 to present Updated monthly 

NASA Active fire data 
MODIS: 1 km 

VIIRS: 250 m 

MODIS: daily, 2000 to 

present 

VIIRS: half-daily, 2012 to 

present 

Available usually after 2 to 

3 months 

Wind 

Cyclone wind hazard maps 

(GAR 2015)  

Maps of cyclone-prone 
areas expressed in terms of 

wind gust (km/h) for 
different return periods (50 

to 1000 years) 

0.27° (~27.75 km) No time coverage Unknown 

Copernicus CDS ERA5 

hourly data on single levels 
Maximum 10 m wind gust 0.25° (~27.75 km) 1979 to present Updated daily (7-day lag) 

Copernicus CDS 
Agrometeorological 

indicators  AgERA5   

Mean wind speed at a 
height of 10 m above the 

surface (m s-1) 

0.1° resolution (~11 km) 1979 to present Updated daily (7-day lag) 

Copernicus CDS ERA5 
hourly data on single levels 

(ERA5)  

Mean wind speed at a 
height of 10 / 100 m above 

the surface (m s-1) 

0.25° resolution (~27.75 

km) 

 

1979 to present 
Quarterly updates (every 

three months) 

Global wind atlas 

Mean wind speed at 10 / 50 
/ 100 / 150 / 200 m above 

the surface (m s-1) 
250 m No time coverage Unknown 

NOAA 

Tropical cyclone track data 0.1° resolution (~11 km) 1841 to present Updated twice weekly 

Pacific hurricane catalog Point and line vector data 
1851 to 2020 (Atlantic) 

1949 to 2020 (Pacific) 
Unknown 

River flooding 

JRC flood hazard maps at 

European and global scale  

Maps of flood prone areas 
in Europe and the 

Mediterranean Basin for 

river flood events of 
different magnitude (from 1-

in-10-year to 1-in-500-year) 

100 m (European and 

Mediterranean Basin),  

1 km (Global) 

No time coverage Unknown 

WRI Aqueduct flood hazard 

maps 

Flood prone areas for river 
and coastal floods of 

different magnitude under 
current baseline and for 

different future projections  

1 km 
Baseline, 2030, 2050, 

2080 
Unknown 

Coastal flooding 

Global coastal flood hazard 

maps 

Global reanalysis of storm 
surges and extreme sea 

levels 

1 km No time coverage Unknown 

WRI Aqueduct Water Risk 

Atlas – Coastal flood risk 

Expected percentage of 
population to be affected by 

coastal flooding in an 

average year, accounting 
for existing flood protection 

standards 

30 arc minutes (~55 km) 

No time coverage, coastal 
flooding measured in an 

average year 
Unknown 

WRI Aqueduct flood hazard 

maps 

Flood prone areas for river 
and coastal floods of 

different magnitude under 

current baseline and for 

different future projections  

1 km 
Baseline, 2030, 2050, 

2080 
Unknown 

Coastal flooding and sea 
level rise maps by Climate 

Central 

Areas that will likely be 
flooded at different 

amounts of rising water due 
to a combination of sea 

level rise, tides and storm 

surges 

USA and Hawaii (~5m); 
Areas where NOAA 

coastal lidar is unavailable 

(~⅓ arcsec resolution or 

10m); Alaska (~60 m)  

No time coverage Unknown 



ENV/WKP(2022)13  17 

  
Unclassified 

3.2. Impacts and measurement of climate-related hazards 

Heat and cold 

Frequency of extreme temperature events  

Extreme heat and cold are important climate-related hazards for many human activities, including human 

health, agriculture, transport and energy. Temperature extremes at both ends of the temperature spectrum 

are considered global health risk factors (The Lancet, 2021[16]). In 2019, for example, 1.7 million deaths 

worldwide were linked to non-optimal temperatures and 356 000 of these deaths were related to high 

temperatures (Burkart et al., 2021[3]). Extreme heat and cold can increase or decrease morbidity and 

mortality, exacerbate pre-existing health conditions, impact agricultural output and result in lower economic 

output, amongst other effects (Burke, Hsiang and Miguel, 2015[17]). Recent studies found that extreme heat 

and cold are associated with a diverse set of death causes, including a variety of cardiorespiratory and 

metabolic diseases but also external causes of mortality such as suicide and several types of injury (Burkart 

et al., 2021[3]). Considering that climate change increases extreme heat-related health risks (Limaye et al., 

2018[18]), accounting for extreme temperatures is considered a key climate-related hazard in this paper.  

Population exposure to extremely hot or cold days can be measured through a variety of commonly used 
indices. For example, the IPCC AR6 measures hot summer days (𝑇𝑀𝐴𝑋𝑖𝑗 > 35°𝐶) where 𝑇𝑀𝐴𝑋𝑖𝑗 is the daily 

maximum temperature on day 𝑖 in year 𝑗 (IPCC, 2021, p. 1522[1]). According to the European Environment 

Agency (EEA) report on climate-related hazard indices, another index of high priority is the number of tropical 
nights (𝑇𝑀𝐼𝑁𝑖𝑗 > 20°𝐶) where 𝑇𝑀𝐼𝑁𝑖𝑗 is the minimum temperature on day 𝑖 in year 𝑗 (ETC-CCA, 2020[9]). 

This index allows to measure days when people are unable to cool down at night. Other measures of heat 

stress, such as the Universal Thermal Climate Index (UTCI), describe how the human body experiences 

atmospheric conditions, and includes other contributing factors beyond air temperature such as humidity, 

wind speed and solar radiation. Meanwhile, measurements of cold stress focus on indices such as the 

number of icing days (𝑇𝑀𝐴𝑋𝑖𝑗 < 0°𝐶) where 𝑇𝑀𝐴𝑋𝑖𝑗  is the maximum temperature on day 𝑖 in year 𝑗.  

Extreme temperature events can also be measured based on the exceedance of the daily minimum or 

maximum temperature above or below a certain percentile value over the base period3 (Head et al., 2018[19]) 

(Perkins and Alexander, 2013[20]). For example, above-average temperatures (𝑇𝑀𝐴𝑋95𝑝) can be measured 

when 𝑇𝑀𝐴𝑋𝑖𝑗 > 95th percentile of the base period where 𝑇𝑀𝐴𝑋𝑖𝑗 is the maximum temperature on day 𝑖 in 

period 𝑗 (Karl, Nicholls and Ghazi, 1999[21]). Similarly, below-average temperatures (𝑇𝑀𝐼𝑁5𝑝) can be 

measured when 𝑇𝑀𝐼𝑁𝑖𝑗< 5th percentile of the base period where 𝑇𝑀𝐼𝑁𝑖𝑗  is the daily minimum temperature 

on day 𝑖 in period 𝑗. These indices allow identifying changes in extreme temperature conditions over time. 

A variety of data sources estimates daily minimum, mean and maximum temperature. For example, the 

Copernicus CDS ERA5 hourly data on single levels dataset from the European Centre for Medium-Range 

Weather Forecasts (ECMWF) provides data with 0.25 degrees resolution (~27.75 km) from 1979 to present 

(Hersbach et al., 2018[22]). In addition, the thermal comfort indices such as the UTCI derived from ERA5 

reanalysis (ERA5-HEAT) is available on the Copernicus CDS and provides hourly UTCI at a 0.25° spatial 

resolution. Alternatively, the Berkeley Earth provides global surface temperature data, which includes 

minimum and maximum temperature. However, this data source has a coarser spatial resolution and does 

not appear to be updated with temperature data after 2019 (Table 3), making it less suitable for estimating 

extreme temperatures in this paper.  

                                                
3 A base period is a standard reference period to calculate average climate normals that represent what can be 

considered a typical climate for a given period. These climate normals are used to compare shorter-term data at local, 

national or global level. 
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Wet and dry 

Frequency of extreme precipitation days  

Extreme precipitation is a common climate-related hazard around the world. Annual and seasonal 

precipitation patterns influence a wide range of human, social and economic activities. Extreme precipitation 

predominantly triggers flooding events, which can lead to casualties, displacement of people, damage to 

infrastructure, and losses in agricultural productivity (Kirchmeier-Young and Zhang, 2020[23]). Recent studies 

suggest that excessive precipitation can affect crop yield as much as excessive heat and drought, including 

through direct physical damage, delayed planting and harvesting, restricted root growth, oxygen deficiency 

and nutrient loss (Li et al., 2019[24]). Identifying specific areas at risk of extreme precipitation is thus important 

to protect individuals, households, communities and the broader society.  

The WMO-mandated Expert Team on Sector-specific Climate Indices (ET-SCI) developed indices describing 

the frequency of extreme precipitation (i.e. the number of events with an intensity above a given threshold) 

(Karl, Nicholls and Ghazi, 1999[21]). For example, the number of very heavy precipitation days (𝑅20𝑚𝑚), is 

a count of the number of days, within a given time period of interest, in which daily precipitation amounted 
to more than 20mm and is formulated as 𝑅20𝑚𝑚 =  ∑ 𝑅𝑖𝑗 > 20 𝑚𝑚 where 𝑅𝑖𝑗 is the daily precipitation 

amount on day 𝑖 in period 𝑗 (Petroliagkis and Alessandrini, 2021[25]). Extreme precipitation events can also 

be measured based on the exceedance of the daily precipitation amount above and below a certain 

percentile value over the reference period. For example, the frequency of extreme precipitation events is 

often measured when the daily precipitation amount > 99th percentile of the reference period to identify days 

with particularly heavy precipitation and is consistent with the EEA’s methodology for assessing the 

frequency of extreme precipitation event (EEA, 2021[26]). 

A variety of data sources are available to estimate precipitation on an hourly, daily or monthly basis and 

enable the observation of changes in annual and seasonal precipitation (Table 3). For example, the IMERG 

data provided by NASA estimates hourly and daily precipitation over the majority of the Earth’s surface since 

2000 through the Global Precipitation Measurement (GPM) satellite constellation with a high pixel resolution. 

Similarly, the ERA5 hourly data on single levels for the daily precipitation amount with a 0.25 degrees 

resolution (~27.75 km) from 1979 to present (Hersbach et al., 2018[22]). This data is based on hourly data 

from the European Centre for Medium-Range Weather Forecasts (ECMWF). 

Droughts 

Droughts are an important climate-related hazard that can result in serious impacts on agriculture, energy 

and water management sectors, and the society as a whole. Droughts are typically categorised into three 

types: (1) meteorological, (2) agricultural or (3) hydrological droughts (Ziese et al., 2014[27]) (Wang et al., 

2016[28]). Generally, meteorological droughts are based on the interplay between precipitation and 

evapotranspiration due to changes in temperature. Agricultural and hydrological droughts usually start from 

meteorological droughts, but are different. For example, changes to the hydrological cycle result in soil 

moisture depletion which can impact crops (i.e. agricultural drought) and eventually lead to changes in 

hydrological features such as rivers or lakes (i.e. hydrological drought). Droughts can also have a 

socioeconomic origin, resulting from the mismanagement of water but this type of drought is more likely to 

affect specific people and regions (OECD, 2016[29]). 

A variety of indices have been developed over the years to estimate past droughts. This includes a variety 

of water stress indicators to assess water stress impacts on agriculture, even though these often do not have 

the geospatial component needed to develop a drought indicator with a high spatial resolution (OECD, 

2017[30]). However, there are a number of geospatial data sources to estimate drought impacts. For example, 

the Standardised Precipitation Index (SPI) is used to estimate the wetness or dryness of an area. The SPI 

is an index of the probability of recording a certain amount of precipitation. This index is positive for wetter 

conditions and negative for drier conditions. However, the SPI does not account for temperature changes 
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due to climate change and therefore does not consider increased evapotranspiration, leading to misleading 

values in drier areas (Ziese et al., 2014[27]). Alternative drought indices have been developed to account for 

temperature changes such as the Standardised Precipitation Evapotranspiration Index (SPEI) and the Global 

Drought Index, which combines the SPI and SPEI into one global drought index (Ziese et al., 2014[27]). 

Further details on these data sources on global drought are in Table 3. 

The agricultural sector is particularly vulnerable to climate-related hazards due to its heavy reliance on 

weather and climate (FAO, 2021[31]), and this is why agricultural droughts are studied in more detail in this 

paper. Agricultural droughts can also be measured using volumetric surface soil moisture, which 

corresponds to the water content in a 0 to 7 cm-depth layer of soil. Water content in the superficial layer of 

soil is important for water supply and for vegetation health. Soil moisture anomaly is a suitable indicator for 

monitoring the intensity of droughts, and shows similar performances in identifying droughts to the 

Standardized Precipitation Index (Zeri et al., 2021[32]). Additionally, the Copernicus CDS provides different 

data sources on soil moisture, which are both satellite and in-situ based. ERA5-Land is more accurate and 

available at a higher resolution than other identified data sources, which allows to capture more variations in 

drought conditions at the local level (Dorigo et al., 2017[33]) (Gruber et al., 2019[34]). 

Wildfires 

Wildfires are an important natural hazard with impacts on forestry, agriculture, tourism, transport, 

infrastructure, water supply, biodiversity, wildlife and human health. Proximate causes of wildfire encompass 

lightning or human activities such as agricultural burning, arson, electric sparks or cigarette discarding. Fire 

activity is conditioned by environmental variables such as weather, fuel availability (i.e. accumulation of 

biomass) and topography (Balch et al., 2017[35]) (Bowman et al., 2020[36]). Generally, persistent dry periods 

characterized by high evaporation and low precipitation combined with the presence of strong winds increase 

the risk of wildfires to spread.   

In developed countries, wildfires are a growing threat to the expanding population living nearby or within 

forested areas. On the other hand, wildfires remain a direct threat to vulnerable minority communities such 

as the elderly, disadvantaged persons or indigenous populations, exacerbating existing inequalities (Davies 

et al., 2018[37]).   

Wildfires are influenced both by climate and non-climate drivers and distinguishing between these drivers 

can be challenging not only at a global level but also nationally and locally (Butry, Prestemon and Thomas, 

2014[38]). Non-climate drivers of wildfires are mostly human activities, such as prescribed burning, agricultural 

activity and land use change, amongst others. Meanwhile, climate change can further exacerbate the 

suitable hot and dry conditions for wildfires, influence wildfire frequency, duration, intensity and spread rate 

(see OECD, forthcoming publication, Adapting to climate change in the management of wildfires). 

Interlinkages between climate change, forests, wildfires and the financial sector are increasingly 

acknowledged to strengthen adaptation measures. Forests represent about 45% of the offset credits issued 

to help fight the changing climate, implying that wildfires have growing implications for financial markets 

because they can burn the forests and release the carbon designed to be permanently stored (So, Haya and 

Elias, 2022[39]). In addition, forest offset programmes should account for wildfire risks to avoid developing a 

landscape that is more flammable or dangerous (Leverkus et al., 2022[40]). Wildfires are thus a risk to the 

environmental integrity of forest offset programmes (Badgley et al., 2022[41]). 

At the global level, data and indices are available to identify (a) wildfire occurrence and extent, and (b) wildfire 

risk.  

a) For example, the Global Wildfire Information System (GWIS), a joint initiative of the Group on Earth 

Observations (GEO), the NASA Applied Research and the EU Copernicus work programmes, 

developed the GlobFire Database, which provides information on the occurrence of wildfires (i.e. 

fire events) during a month or a year based on NASA MODIS Terra and Aqua satellite data. Due to 
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technical constraints, GlobFire data omits small fire events (< 25 ha), which indirectly removes most 

controlled fires such as prescribed burnings (Felipe Galizia et al., 2021[42]). It also excludes small 

wildfires that are part of the natural system and that can benefit fire-adapted ecosystems though 

vegetation renewing. 

b) To assess the fire danger of the risk of wildfires to occur, the Fire Weather Index (FWI) System is a 

meteorologically based index used worldwide for most jurisdictions around the world (Goldammer 

et al., 2018[43]) (Field, 2020[44]). The FWI System was developed in Canada and is composed of 

three moisture codes, and three fire behaviour indices. The moisture codes capture the moisture 

content of three generalised fuel classes and the behaviour indices reflect the spread rate, fuel 

consumption and intensity of a starting fire. Overall, these indices do not detect actual wildfires but 

rather the likelihood for a wildfire to occur if there is an ignition (Table 3).  

Wind 

Wind threats or windstorms are an important climate-related hazard with direct impacts on humans, 

ecosystems and economic infrastructures. For example, the force of windstorms can create flying debris and 

falling trees, which can either strike humans directly or damage built structures. For this reason, identifying 

wind threats is an important part of assessing the risk of climate-related hazards. A common way of 

measuring wind threats is through wind speed, which refers to the horizontal speed of the wind or movement 

of air. Several global data sources identify daily and monthly mean wind speeds at varying heights (e.g. 10, 

50, 150, 200 m) above the Earth’s surface such as the Copernicus Climate Data Store (Table 3). However, 

most damages of windstorms are due to the extreme wind speeds during gusts. Therefore, gust speeds, 

defined as the maximum value of the 3-second running average wind speed, can be used to assess wind-

related hazards. 

Other global data sources to assess the occurrence of windstorms are limited. For example, the NOAA 

provides data on tropical cyclones (hurricanes, typhoons) through the International Best Track Archive for 

Climate Stewardship (IBTrACS) and the HURDAT2 database. This includes information on the maximum 

sustained wind speed, minimum central pressure and storm centre for circulation. However, these data 

sources would require substantial data manipulation and are region-specific, making it unclear how to assess 

windstorms in areas that are not affected by tropical cyclones. Alternatively, the Emergency Events Database 

(EM-DAT) from the Centre for Research on the Epidemiology of Disasters’ (CRED) records windstorms as 

part of the category ‘convective storm’, which contains several subcategories relevant to windstorms (i.e. 

tornado, wind, severe storm, etc.). Although this database has information on the country and region, it is 

not georeferenced, making it difficult to assess the risk of wind threats to populations and infrastructure. 

River flooding 

Flooding can cause economic losses through its impacts on energy and transport infrastructures, human 

settlements and agricultural land. Flooding is considered the second gravest hazard for the agriculture 

sector, responsible for an estimated loss of USD 21 billion of crop and livestock production between 2008 

and 2018 in Least Developed and Low-to-Middle-Income countries (Global Network Against Food Crises, 

2022[45]). With changing climate and without appropriate adaptation measures, flood events are projected to 

rise in all continents, especially in Asia, America and Europe (Alfieri et al., 2017[46]). 

Different types of floods can be distinguished by the source and the mechanism of flooding. River flooding 

occurs when excessive rainfall results in the river exceeding the channel capacity and spilling into the 

adjacent areas. Pluvial floods occur when the absorption capacity of the soil or the drainage capacity in 

urban areas is exceeded. River flooding can be caused by heavy rainfalls or snowmelt runoffs. River flooding 

is consequently interrelated to pluvial flooding, but different.  
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Various data sources and variables exist to assess river flooding hazard. The World Resources Institute 

(WRI) developed the Aqueduct Floods online platform that measures riverine and coastal flood risks under 

both current baseline conditions and future projections in 2030, 2050 and 2080. The Joint Research Centre 

(JRC) also provides River Flood Hazard Maps for the whole world, and for Europe and the Mediterranean 

Basin region at a more granular spatial resolution (Dottori et al., 2021[47]). The Global Flood Awareness 

System (GloFAS) provides data on daily river discharge in the last 24 hours (m3 s-1) informing on the amount 

of water that flows through a river section. GloFAS is part of the Copernicus Emergency Management 

Service (CEMS) and provides a forecasting tool to develop a flood summary based on 2-, 5- and 20-year 

exceedance probability of rivers. 

Coastal flooding 

Coastal areas experience a variety of climate-related hazards and climate change is expected to exacerbate 

existing impacts even more (OECD, 2021[48]). This includes sea level rise, coastal storm surges, ocean 

warming and acidification, and changes to the hydrological cycle (OECD, 2019[49]) (OECD, 2021[48]). The 

IPCC AR6 provides, for example, sea level rise simulations between 2020 and 2150 (IPCC, 2021[1]). 

Including sea level rise into existing data sources for coastal flooding is complicated. It requires accounting 

for a variety of climate scenarios, and it is unclear what relative contribution sea level rise has to present-

day coastal flooding considering other contributing events such as extreme precipitation or storm surges. 

A variety of data sources exist to assess coastal flooding hazards. One data source from ResourceWatch 

and Surging Seas combines coastal flooding and sea level rise using a high accuracy Digital Elevation 

Model. However, the data source is not publicly accessible (Climate Central and Surging Seas, 2018[50]). 

The Water Risk Atlas provides data on coastal flood risk by measuring the percentage of population expected 

to be affected by coastal flooding, accounting for existing flood protection standards (Hofste et al., 2019[51]). 

The downside of using this data source for assessing coastal flooding is that it does not allow assessing the 

estimated impact of coastal flooding on other exposed assets (such as urban areas). The Global Tide and 

Surge Reanalysis (GTSR) data source provides a global reanalysis of storm surges and extreme sea levels 

based on hydrodynamic modelling (Muis et al., 2016[52]). This data source is based on predictive modelling 

before the event occurred (ex-ante), providing modelled coastal flooding hazards with different return 

periods. A key limitation of this data source is that existing flood protection measures such as dikes and 

storm surge barriers are not accounted for. 

3.3. Selected exposure indicators for climate-related hazards 

For each of the four dimensions of climate-related exposure under study, a selection of data sources were 

identified. These include: 

► Population density: The GHSL multiannual population grid shows the distribution and density of the 

population at a high spatial resolution of 250 m, expressed as the number of people per cell (Freire 

et al., 2016[53]). 

► Cropland, forest and urban area land cover: The Copernicus Global Land Cover data allows for the 

identification of global cropland, forest and urban area cover at a high spatial resolution of 300 m 

from 1992 to 2020 (Buchhorn et al., 2020[54]). 

Against this background, this paper develops 19 exposure indicators for climate-related hazards that 

represent a risk to the economy and the society at large (Table 4). This selection remains work-in-progress 

and future work could add new indicators to existing hazard and exposure indicators. 
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Table 4. Selected indicators for climate-related hazards 

Domain  Hazard indicators Exposure indicators Rationale Data sources 

 
Extreme 

temperature 

A
bs

ol
ut

e 
th

re
sh

ol
d 

 ► Percentage of population exposed to 
n number of hot days (Tmax > 35°C) 

► Percentage of population exposed to 
n number of tropical nights (Tmin > 20°C) 
► Percentage of population exposed to 

n number of days identified as a hot day 
and a tropical night 
► Population-weighted average of the 

number of days per year with strong, 
very strong and extreme heat stress 
► Percentage of population exposed to 

n number of icing days (Tmax < 0°C) 

Temperature extremes on both 
sides of the spectrum are 

global risk factors. Extreme 
heat and cold are important 
climate-related hazards for 

many human activities, 
including human health, 
agriculture, transport and 

energy. 

Copernicus Climate 
Data Store (CDS) 

ERA5 hourly data 
on single levels 
(ERA5), the 

Thermal comfort 
indices (ERA5-
HEAT), and Global 

Human Settlement 
Layer (GHSL) 
population grids 

R
el

at
iv

e 
th

re
sh

ol
d

 

► Mean number of days when the 
daily maximum temperature is 

above the 95th percentile of the 
reference period 
► Mean number of days when the 

daily minimum temperature is 
below the 5th percentile of the 
reference period 

 

 
Extreme 

precipitation 

A
bs

ol
ut

e 
th

re
sh

ol
d 

► Percentage of land exposed to n 
number of days where the total 

daily precipitation is above 20 
mm. 

 Precipitation extremes are risk 
factors that can cause sudden 

flooding, impacting, for 
example, the agricultural 
sector. Accounting for 

precipitation extremes is vital 
for policymaking (e.g. disaster 
preparedness or investment 

decision-making). 

Copernicus CDS 
ERA5 hourly data 

on single levels and 
Copernicus global 
land cover data 

R
el

at
iv

e 
th

re
sh

ol
d 

► Percentage of land exposed to n 
number of days when the total 

daily precipitation amount is 
above the 99th percentile 

► Percentage of cropland exposed to n 
number of days when the total daily 

precipitation amount is above the 99th 
percentile 

Drought 
 ► Average soil moisture anomaly ► Average cropland soil moisture 

anomaly 

Droughts are an important 
indicator with far-reaching 
socio-economic impacts 

including loss of agricultural 

yield.  

Copernicus CDS 
ERA5-Land monthly 
averaged data and 

Copernicus global 

land cover data 

Wildfire 
 ► Amount of burned area ► Percentage of population located in 

areas at risk of burning 

► Percentage of forested areas at risk 

of burning 

Wildfires are an important 
natural hazard with impacts on 

forestry, agriculture, tourism, 
transport, infrastructure, water 
supply, biodiversity, wildlife, 

and human health. Wildfires 
are expected to intensify with 

climate change. 

Global Wildfire 
Information System 

data based on 
MODIS satellite 
imagery (NASA), 

GHSL population 
grids and 
Copernicus global  

land cover data 

Wind 

threats 

H
is

to
ric

al
 d

at
a 

► Percentage of land exposed to 

violent storms per year 
► Percentage of population exposed to 

violent storms per year 

► Percentage of built-up area exposed 

to violent storms per year 

Violent storms are defined 
using wind gust, as most 
damages occur in extreme 

wind speeds during gusts. 

ERA5 hourly data 
on single levels 
from 1979 to 

present, GHSL 
population grids and 
Copernicus global 

land cover data 

H
az

ar
d 

m
ap

 

► Percentage of land exposed to 

cyclone wind threats with a 50-, 
100-, 250- and 500-year return 

period 

► Percentage of population exposed to 

cyclone wind threats with a 50-, 100-, 

250- and 500-year return period 

► Percentage of built-up area exposed 
to cyclone wind threats with a 50-, 

100-, 250- and 500-year return period 

Cyclone wind threats are risk 
factors to humans directly 
through flying debris and falling 

trees or damage built-up 
areas. The NOAA wind scale 
allows classification into low, 

moderate and high wind 

threats. 

Cyclone wind 
hazard data from 
GAR 2015, GHSL 

population grids and 
Copernicus global 

land cover data 
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Domain  Hazard indicators Exposure indicators Rationale Data sources 

River 

flooding 

H
az

ar
d 

m
ap

 

► Percentage of land exposed to 
river flooding with a 10-, 20-, 50- 

and 100-year return period 

► Percentage of population exposed to 
river flooding with a 10-, 20-, 50- and 

100-year return period 

► Percentage of built-up area exposed 
to river flooding with a 10-, 20-, 50- 

and 100-year return period 

► Percentage of cropland exposed to 

river flooding with a with a 10-, 20-, 

50- and 100-year return period 

River flooding can cause huge 
economic losses, impacting 
the population, built-up areas, 

or other infrastructure. 

GHSL population 
grids and 
Copernicus global 

land cover data 

Coastal 

flooding 

H
az

ar
d 

m
ap

 

► Percentage of land exposed to 
coastal flooding with a 10-, 25-, 50- 

and 100-year return period 

► Percentage of population exposed to 
coastal flooding with a 10-, 25-, 50- 

and 100-year return period 

► Percentage of built-up area exposed 

to coastal flooding with a 10-, 25-, 50- 

and 100-year return period 

► Percentage of cropland exposed to 
coastal flooding with a 10-, 25-, 50- 

and 100-year return period 

Coastal flooding threatens 
coastal regions and 

communities and is expected 
to worsen due to climate 

change. 

Global coastal flood 
hazard maps (Muis 

et al., 2016[52]), 
GHSL population 
grids and 

Copernicus global 

land cover data 
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4 Results 

4.1. Extreme temperature 

Hot days and tropical nights 

Most IPAC countries were affected by hot days. Hot days are defined as days where the daily maximum 

temperature exceeds 35°C. Countries whose population was most exposed to more than 8 weeks with hot 

days where Saudi Arabia, India and Türkiye, with 90.9%, 69.7% and 10.3% of the population exposed to 

more than 8 weeks of hot days over the period 2017-2021, respectively (Figure 1). Changes in extreme 

temperatures over time are discussed in more detail below in the section ‘Changing extreme temperatures’, 

particularly because such extremes are expected to further increase due to climate change. However, other 

countries such as the United States and Mexico also have a considerable proportion of their population 

exposed, with 7.3% (~24 million) and 10% (~13 million) of the population exposed to more than 8 weeks of 

hot days over the period 2017-2021, respectively. 

Figure 1. A majority of countries have population exposed to hot summer days 

Average percentage of population exposed to n number of hot days (Tmax > 35°C) over the period 2017-2021 

 

Note: Countries are ranked according to the share of population exposed to any number of hot days. For further details on methods see Annex A. 
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To account for the inability for human bodies to cool down at night, this paper also measures the number of 

tropical nights where the daily minimum temperature is above 20°C. A total of 21 countries have more than 

10% of population exposed to more than 8 weeks with tropical nights over the period 2017-2021 (Figure 2). 

Similarly to previous results, countries such as India and Saudi Arabia have 97.1% and 95.9% of the 

population exposed to more than 8 weeks of tropical nights over the period 2017-2021, respectively 

(Figure 2). In the case of India, this represents approximately 1.35 billion people, highlighting the serious 

risks associated with heat stress in certain countries.  

Figure 2. A large share of population is exposed to many tropical nights 

Average percentage of population exposed to n number of tropical nights (Tmin > 20°C) over the period 2017-2021 

 

Note: Countries are ranked according to the share of population exposed to any number of tropical nights. Further details on the methods are 

discussed in Annex A. 

This paper also combined the indices for hot days and tropical nights to identify days that were both a hot 

day (Tmax > 35°C) and a tropical night (Tmin > 20°C) (Figure D.1). Results for this combined index are similar 

to the previous indicator assessing the number of hot days (Figure 1). This result is expected considering 

that days when temperatures are above 35°C likely also have night-time temperatures above 20°C. 

The Universal Thermal Climate Index 

Another indicator included in this paper is based on the Universal Thermal Climate Index (UTCI), which 

accounts for other meteorological effects besides air temperature such as relative humidity, wind speed and 

solar radiation. Results show that over the past 5 years, population exposure to heat stress has been 

particularly high in Indonesia, India and Saudi Arabia, all of which experienced more than 250 days per year 

of strong (or worse) heat stress exposure (Figure 3). This aligns with previous indicator results on population 
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exposure to hot days and tropical nights (Figure 1 and Figure 2). Latin America, the Mediterranean Basin, 

Australia, and the United States are also particularly impacted, and this trend is increasing faster in these 

regions. For example, Costa Rica and Israel have been hit hard by heat stress, as population in these two 

countries experienced on average more than 140 days per year of strong heat stress or worse (Figure 3), 

and experienced more than 25 days of additional strong heat stress compared to the reference period (i.e. 

1981-2010) (Figure 4).  

Figure 3. A large share of population is exposed to heat stress 

Average number of days per year of heat stress that population experienced over the period 2017-2021 

 

Note: Further details on the methods are available in Annex A. 
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Figure 4. Days with strong heat stress exposure are increasing across countries 

Additional days per year of at least strong heat stress exposure (UTCI > 32°C) over the period 2017-2021 compared 

to the reference period 1981-2010 

 

Note: Further details on the methods are available in Annex A. 

Considerable subnational variation exists concerning the level and growth of population exposure to strong 

heat stress. Nearly all (95%) regions in OECD countries experienced an increase of exposure to heat stress 

over the past 5 years compared to the reference period. For example, the region of Córdoba (Colombia) 

experienced over the past 5 years an average of 267 days per year of very strong heat stress, a 70-day 

longer period compared to the reference period of 1981-2010. The districts of Haifa and Tel Aviv in Israel 

experienced an increase of more than a month per year in exposure to strong heat stress (UTCI > 32°C) 

(Figure 5). The States of Baja California Norte in Mexico and Arizona in the United States were the most 

impacted by extreme heat stress (UTCI > 46°C) in their respective countries during the past 5 years. 
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Figure 5. Considerable subnational variation of population exposure to heat stress 

Level and growth of population exposure to strong heat stress or worse (UTCI > 32°C) over the period 2017-2021 for 

OECD large regions (TL2) 
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Note: Growth of population exposure is measured based on the reference period 1981-2010. Further details on the methods are in Annex A. 
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Changing extreme temperatures 

Overall, countries are experiencing more additional days with above-average temperatures compared to the 

reference period (1981-2010) (Figure 6a). For nine countries the overall association is unclear because the 

95% confidence interval (CI) includes the reference value (i.e. 0) (Figure 6a). In addition, countries are 

experiencing a decreasing number of days with below-average temperatures, and only seven countries have 

results which are non-significant because the 95% CI includes the reference value (Figure 6b). Considering 

the impact of extreme temperatures on the population, these increases in above-average temperatures and 

decreases in below-average temperatures should be alarming, indicating that extreme temperature events 

may become more prevalent in the future. This highlights the urgency to adapt to climate change and mitigate 

its further amplification. 

Figure 6. Countries experience more above-average and less below-average temperature days, a 
clear display of a changing climate 

Mean annual change in the number of unusually warm and unusually cold days over the period 1979-2021 where (a) 

Tmax > 95th percentile and (b) Tmin < 5th percentile of the reference period (1981-2010) 
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Note: A linear regression model is applied on the yearly number of days when (a) the daily maximum temperature (Tmax) is above the 95th percentile 

and (b) the daily minimum temperature (Tmin) is below the 5th percentile of the reference period (1981-2010). This linear regression model is not 

adjusted for any other potentially contributing variables and is plotted with the mean and 95% confidence interval.  
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4.2. Extreme precipitation 

This paper assesses extreme precipitation events by measuring the number of days exceeding the 99th 

percentile of daily precipitation values over the reference period (1981-2010). By using the 99th percentile 

instead of the 95th percentile, it allows identifying extreme precipitation events (ca. 4 times per year). Overall, 

results show that croplands in a majority of IPAC countries are experiencing a substantial number of days 

with extreme precipitation events compared to the reference period (1981-2010). In 2021, croplands were 

particularly exposed in several Western and Northern European countries such as Belgium, Latvia, the 

Netherlands, Sweden and Switzerland. Results show a high cropland exposure to one week or less of days 

with extreme precipitation events, highlighting that future analyses could identify extreme precipitation events 

during critical times in the year such as during seeding or harvest cycles (i.e. spring or autumn precipitation 

events). 

On average, a small subset of IPAC countries is exposed to more than one week with extreme precipitation 

events over the past five years. This includes countries such as Colombia, Costa Rica, Indonesia, Norway 

and Peru (Figure 7). IPAC countries with the highest share of croplands exposed to extreme precipitation of 

more than one week include Indonesia (25.5%), Peru (11.9%) and Colombia (11.1%).  

Figure 7. Some countries have cropland exposed to more than one week of extreme precipitation 

Average percentage of cropland exposed to n number of weeks of extreme precipitation over the period 2016-2020 

 

Note: Countries are ranked according to the aggregate area of cropland exposed to at least one week of extreme precipitation over the period 

2016-2020. Cropland land cover data from 2020 is used and will be updated once 2021 land cover data become available. Further details on the 

methods are in Annex A. 
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For some countries where cropland was highly exposed to more than one week of extreme precipitation 

events in 2021, a large share of GDP is dependent on the agricultural sector. Six out of ten countries 

considered most dependent on the “Agriculture, forestry and fishing” sector are also among the most 

exposed to extreme precipitation of more than one week per year (Figure 8). For example, the GDP share 

of the “agriculture, forestry and fishing” sector in Indonesia and Colombia is approximately 13.3% and 7.1%, 

respectively, highlighting that some countries’ GDP may be more exposed to extreme precipitation events 

that other countries.  

Figure 8. Some countries’ GDP is more exposed to extreme precipitation than other countries 

Average annual percentage of cropland exposed to n number of weeks of extreme precipitation and share of GDP 

from the Agriculture, forestry and fishing sector over the period 2017-2021 

 

Note: Countries are ranked according to the average share of cropland exposed to one week or more of extreme precipitation over the period 

2017-2021. Gross Domestic Product (GDP) values represent the average GDP value from Agriculture, forestry, and fishing over the period 2017-

2021 (OECD, 2022[55]). These GDP values may overestimate agricultural GDP since it includes forestry and fishing. GDP values for Peru are 

derived from the World Bank national accounts. Further details on the methods are available in Annex A. 

Going beyond national exposure, this indicator can also suggest potential exposure to extreme precipitation 

of global agricultural commodities and their supply chain. Indeed, some of the biggest producers of main 

primary crops are among the IPAC countries where cropland area is the most exposed to repeated extreme 

precipitation. For example, more than 5000 km2 of cropland in Indonesia, India and Brazil was exposed to 

repeated extreme precipitation in 2021. According to the latest FAO data, Indonesia accounts for 59.8% of 

global oil palm fruit production and 7.23% of global rice production. India produces 23.5% of global rice 

output, 20.8% of global sugar cane output and 13.5% of global potato output. Meanwhile, Brazilian 

production of sugar cane and maize (corn) represents 38.6% and 8.8% of global output, respectively (FAO, 
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2021[56]). Some of the crops resist better to extreme precipitation events than other crops. For example, rice 

requires flooding to grow and therefore may not be significantly impacted by extreme precipitation events4.  

In Indonesia, all provinces were exposed to repeated extreme precipitation days in 2021 (Figure 9a), while 

in India exposure was concentrated in the southern districts of Karnataka, Kerala, Tamil Nadu and the island 

of Andaman (Figure 9b). Finally, in Brazil, results show that extreme precipitation was mainly concentrated 

in the North and Central-West regions, including Brazilian states such as Acre, Amazonas, Mato Grosso, 

Rondônia, Roraima and Pará (Figure 9c). 

Figure 9. Large subnational variability in land exposure to extreme precipitation 

Land exposure to more than one week of extreme precipitation events in 2021 for (a) Indonesia, (b) India, (c) Brazil 

and (d) Colombia 

 

Note: Further details on the methods are available in Annex A. 

                                                
4 Identifying crop vulnerability to extreme precipitation events may provide a more detailed understanding of the impact 

on agriculture in specific countries and regions, depending on data availability. 
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4.3. Drought 

Soil moisture anomaly 

Countries most affected by agricultural droughts are Saudi Arabia, Argentina and South Africa, which 

experienced a decline of more than 6% on average in cropland soil moisture in the past five years compared 

to 1981-2010 (Figure 10). However, these numbers correspond to the average soil moisture anomaly over 

the entire cropland area of countries, and can hide more severe local declines in soil moisture. In most 

countries, areas with a soil moisture anomaly below -10% are observed (Figure 12). In seven OECD 

countries (Australia, the United States, Canada, Spain, Mexico, Chile and Colombia) some areas recorded 

a drop in soil moisture of more than 30% on average over the past five years compared to 1981-2010. This 

paper also measures monthly soil moisture indices, which enables to detect more localised severe drought 

events. 

Figure 10. A majority of IPAC countries experience worsening droughts on croplands 

Soil moisture anomaly in cropland, 2017-2021 compared to the reference period 1981-2010 

 

Note: Iceland is not included due to data unavailability.  Further details on the methods are available in Annex A. 

In almost 70% of OECD’s large regions, cropland soil moisture was lower in the past 5 years than during the 

1981-2010 reference period. Across and within countries, the impact of droughts on agriculture differs widely. 

The most impacted areas are mostly located in Australia, Western United States, Northern Mexico and 

Northern Chile (Figure 12). Among the most affected regions, Tolima in Colombia experienced a soil 

moisture decline of about 10% over the past 5 years compared to the reference period (Figure 11). In this 

region, Gross Value Added (GVA) in the agriculture, forestry, and fishing sector accounts for a significant 
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share of total GVA (more than 16%), which makes the economy of this region particularly vulnerable (OECD, 

2022[57]). 

Figure 11. Changes in soil moisture differ widely across regions 

Soil moisture anomaly in cropland, 2017-21 compared to 1981-2010, OECD large regions (TL2) 

 

Note: Further details on the methods are available in Annex A. 
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Figure 12. Most countries show localised changes in soil moisture 

Soil moisture anomaly 2017-21, compared to 1981-2010 
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4.4. Wildfire 

Burned area extent 

On average, more than 1% of land was burned per year over the period 2017-2021 in countries such as 

Argentina, Australia, Brazil, Colombia, India, Portugal and South Africa (Figure 13). In terms of the absolute 

amount of burned area, Australia and Brazil account for the largest share of burned land area globally 

(Figure 13). However, results do not differentiate between wildfire and controlled burning that is implemented 

to reduce the risk of severe, uncontrolled wildfires. Most of the area burnt in Australia, for example, is from 

controlled burning conducted for this purpose. This is further discussed in Section 6.  

Overall, 20% of burned land globally in the past five years occurred in ten IPAC countries. These ten 

countries include three high-income economies (i.e. Australia, Canada and the United States), six upper-

middle income economies (i.e. Argentina, Brazil, China, Colombia, Mexico and South Africa) and one lower-

middle income economy (i.e. India), suggesting wide disparities in terms of labour-constraints, financing 

needs as well as fuel management wildfire policy implementation and coping capacity5. 

Figure 13. A small subset of IPAC countries represent the majority of burned area 

Amount and percentage of burned area, annual average over the period 2017-2021 

 

Note: Further details on the methods are available in Annex A. 

                                                
5 World Bank classification of GDP per capita (2022). lower-middle income economy (USD 1,046-4,095); upper-middle 

income economy (USD 4,096-12,695); high-income economy (USD 12,696 or more). 
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The majority of burned area in Portugal was situated in the region of the Algarve (Figure 14a), while fires in 

Brazil span from the northeast region to the central west region. The states of Piaui, Maranhao, Tocantins, 

Bahia, Goias, Mato Grosso and Mato Grosso do Sul were particularly exposed to fires (Figure 14b). In South 

Africa, fires were mainly concentrated in the eastern provinces of Limpopo, MpumaIanga, Gauteng, North 

West Province, Kwazulu-Natal, Free State and Eastern Cape (Figure 14c). In Australia, some areas are 

burnt in managed fires to prevent large uncontrolled fires and are part of cultural practices such as in the 

north of Australia (Figure 14d). Therefore, not all burned areas represent a risk for humans and economic 

assets, having limited negative environmental and societal impacts. Nevertheless, Australia did experience 

extreme wildfires across many areas of the country during the summer 2019-2020, particularly in the 

Southeast region of the country. The number of fires, their severity and extent, and the damage caused to 

infrastructure and the environment were unprecedented, covering between 24 and 40 million hectares of 

land (Royal Commission, 2020[58]). 

Figure 14. Substantial variation in burned area extent between countries 

Burned area extent for (a) mainland Portugal, (b) Brazil, (c) South Africa and (d) Australia in 2021 

 

Note: Results for Australia may overestimate actual wildfire events because larger ‘prescribed’ fires are part of the cultural practises and are 

increasingly re-introduced in present-day fire management techniques; this is discussed in Section 6. Further details on methods are in Annex A. 
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Forest exposure to wildfire danger 

Overall, forest areas exposed to more than three consecutive days of very high or extreme wildfire danger 

show patterns of distribution similar to previous wildfire indicators. The risk classes indicate the danger of 

forest fires based on numerical weather data. Over the past five years, Brazilian forests experienced the 

biggest absolute exposure (~2 million km2) to very high or extreme fire risk (Figure 15). Other countries such 

as the United States, Australia and Mexico also have considerable amounts of forest exposed, with 894 

thousand km2, 701 thousand km2 and 632 thousand km2 of forest areas exposed to very high or extreme fire 

risk respectively. By mapping forest areas exposed to very high or extreme fire risk, this indicator can also 

indicate where and what type of forest may be at risk of fire. Forest ecosystems are a critical component of 

the world’s biodiversity as many forests are more biodiverse than other ecosystems (FAO, 2020[59]). For 

example, forests in three out of ten countries most exposed to fire risk in terms of absolute area (i.e. Brazil, 

Mexico and China) are amongst the forests with the biggest tree species endowment on the globe (FAO, 

2020[59]). 

Forests in Middle Eastern countries (e.g. Israel and Saudi Arabia) are entirely exposed to very high or 

extreme fire risk (Figure 15). However, Israel and Saudi Arabia are characterized by low (< 10%) and very 

low (< 1%) forest cover, respectively, highlighting the importance to account for both the absolute and relative 

extent of forest exposure to risk of burning. 

Figure 15. In a third of IPAC countries over 20% of forests are exposed to very high or extreme fire 
danger  

Amount and percentage of tree-covered area exposed to very high (> 5) or extreme (> 6) fire danger for more than 

three consecutive days, annual average over the period 2017-2021 

 

Note: Further details on the methods are available in Annex A. 
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Population exposure to wildfire danger 

Population exposure to wildfire danger assesses locations where populations are exposed to a very high 

wildfire danger and accounts for vegetation biomass as well as historical fire events and burned area data. 

In 2021 alone, more than 25% of Australia’s population was exposed to a very high wildfire danger, while 

approximately 10% of the population in South Africa, India and Mexico and between 5% and 10% of 

population in Costa Rica, Israel and Chile lived in areas with a very high wildfire danger. However, 2021 was 

a La Niña year in the Pacific region, leading to cooler than average temperatures across most of mainland 

Australia. 

Over the last five years, an annual average of 62% of the population in South Africa and 44% of the 

population in Australia was exposed to a very high wildfire danger (Figure 16). In other IPAC countries, more 

than 10% of population was exposed to a very high wildfire danger, including four countries in the Americas 

(i.e. Argentina, Brazil, Chile and Mexico), two European countries (i.e. Bulgaria and Portugal), two Asian 

countries (i.e. China and India) and one country in the Middle East (i.e. Israel). 

When investigating the total amount of exposed population, India’s population is the most exposed to a very 

high wildfire danger. In 2021 alone, 160 million people were living in areas with a very high wildfire danger 

in India, and an annual average amount of 200 million people were living in areas with a very high wildfire 

danger in India between 2017 and 2021 (Figure 16). In addition, China and South Africa have an annual 

average of more than 30 million people exposed to very high wildfire danger between 2017 and 2021. 

Figure 16. In eleven IPAC countries over 10% of population lives in areas exposed to very high or 
extreme wildfire danger 

Amount and percentage population exposed to very high or extreme wildfire danger, annual average over 2017-2021 

 

Note: Further details on the methods are available in Annex A. 
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4.5. Wind threats 

Storms 

Figure 17 and Figure 18 show respectively the share of population and built-up area exposed to violent 

storms in the last three years. Countries most exposed to violent storms are located mostly in north-western 

Europe and eastern Asia. Countries such as Iceland, Ireland, the United Kingdom, the Netherlands and 

Belgium had more than 80% of their population and built-up areas exposed to violent storms in 2020, 

highlighting the importance of accounting for wind threats as a climate-related natural hazard. Recall that 

this paper examines the exposure to wind-related hazards, and not the vulnerability of infrastructures or 

settlements to such hazards. 

Figure 17. Populations in northwestern Europe and eastern Asia are exposed to violent wind 
storms 

Percentage of population exposed to violent storms or worse (wind gust speed > 28.6 m/s), annual average over the 

period 2017-2021  

 

Note: Further details on the methods are available in Annex A. 
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Figure 18. Built-up areas in northwestern Europe and eastern Asia are exposed to violent wind 
storms 

Percentage of built-up area exposed to violent storms or worse (wind gust speed > 28.6 m/s), annual average over 

the period 2017-2021 

 

Note: Further details on the methods are available in Annex A. 

Cyclones 

This paper also assesses population and built-up exposure to cyclones by looking at cyclone hazard maps, 

expressed in wind gusts (km/h) with a 100-year return period. To categorise the different cyclone 

intensities, the Saffir-Simpson hurricane scale is used, which is based on sustained wind speed. To match 

this wind scale, wind gust values were readjusted by considering that wind gust speed is around 30% 

higher than sustained wind speed. (Figure 19). The most exposed IPAC countries are Korea, Japan and 

Mexico where more than 60% of both their population and built-up areas are exposed to tropical cyclones 

(i.e. sustained wind speed higher than 119 km/h or 33 m/s) with a 100-year return period. Japan is the 

country most exposed to violent cyclones, as almost 80% of its population is exposed to cyclones of 

category 3 or higher (wind speed higher than 178 km/h) with a 100-year return period. 
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Figure 19. A small subset of IPAC countries is exposed to tropical cyclones 

Percentage of (a) population and (b) built-up area exposed to cyclone categories with a 100-year return period 

  

Note: Wind gust (km/h) data with a 100-year return period were first converted to sustained wind speed and separated into 

cyclone categories using the Saffir-Simpson scale. Further details on the methods are available in Annex A. 
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4.6. River flooding 

River flooding can cause substantial economic losses, by damaging infrastructure, settlements, and 

agricultural lands. In terms of total land exposure to river flooding, the most exposed IPAC countries are 

the Netherlands and Hungary, with around 20% of total area exposed to river flooding (Figure 20). In terms 

of built-up area exposure, China is the most exposed country with 22% of its built-up area exposed to a 

100-year river flood, followed by Latvia (21%), and the Netherlands (19%). In terms of agricultural land 

exposure, the most impacted IPAC countries are Hungary, the Netherlands, and the Slovak Republic with 

more than 17% of their cropland exposed to 100-year river flooding. 

Figure 20. IPAC countries are exposed to river flooding to varying degrees 

Built-up area, cropland and total land in 2020 exposed to river flooding with a 100-year return period 

 

Note: Further details on the methods are available in Annex A. 

River flooding can also cause significant human losses. Among the IPAC countries, populations in Latvia 

and the Netherlands are the most exposed to river flooding with more than 24% of people exposed to a 

100-year flood (Figure 21). China and India are also particularly exposed to such hazard with respectively 

21% and 17% of their population exposed to a 100-year flood. These two countries also experienced the 

largest increase in population exposure to river flooding with respectively 3.0 million and 5.3 million 

additional people exposed in 2015 compared to 2000.  
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Figure 21. River flooding exposes many populations in most IPAC countries 

Population in 2020 exposed to river flooding with a 10-, 20-, 50- and 100-year return period 

 

Note: 2020 population data is interpolated from the GHSL 2015 and 2000 population grids. Further details on the methods are available in Annex A. 

There are also large subnational disparities in exposure to river flooding. Bremen, South Holland, and 

Hamburg are the most exposed regions in European OECD countries, with more than 40% of their 

populations exposed to a 100-year flood (Figure 22). With more than 60% of its population at risk, Rotterdam 

in the Netherlands is the most exposed OECD metropolitan area of more than 1.5 million inhabitants, 

followed by Nagoya in Japan and Lyon in France. 
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Figure 22. Considerable subnational variation in population exposure to river flooding 

Population in 2020 exposed to 100-year river flooding in OECD large regions (TL2)  

 

Note: Further details on the methods are available in Annex A. 
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Figure 23. Considerable city-level variation in population exposure to river flooding 

Percentage of population in 2020 exposed to 100-year river flooding in OECD cities 
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Note: Further details on the methods are available in Annex A. 
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4.7. Coastal flooding 

Low-lying coastal communities face a range of coastal flooding hazards such as storm surges and coastal 

erosion. All of these hazards are expected to increase as climate change increases the frequency and 

severity of coastal floods. In this paper, exposure indicators for coastal flooding hazards are developed 

using flood hazard maps of storm surges and extreme sea level events. These maps do not account for 

sea level rise. The most exposed countries are the Netherlands, Belgium and Denmark, of which the 

Netherlands has approximately 51% of land area potentially exposed to coastal flooding with a 10-year 

return period, followed by 6.3% and 5.6% for Belgium and Denmark, respectively. These figures should be 

interpreted with caution because they do not account for existing flood protection measures; nevertheless, 

they also point to the importance of maintenance of existing protections to prevent future exposures.  

In line with previous results, 9 out of 45 IPAC countries have more than 2% of built-up area potentially 

exposed to coastal flooding with a 10-year return period (Figure 24). The Netherlands is the most exposed 

with 48.1% of its built-up area potentially exposed to coastal flooding with a 10-year return period, followed 

by Belgium (7.1%) and China (4.3%) (Figure 24). This reflects the fact that much of the land along the 

North Sea coast is either below sea level or just slightly above it, exposing a sizeable amount of the land 

and its built-up areas to coastal flooding hazards (Figure 25). 

Figure 24. A subset of countries has a sizeable part of built-up area potentially exposed to coastal 
flooding  

Built-up area in 2020 exposed to coastal flooding with a 10-, 25-, 50- and 100-year return period 

 

Note: Exposure in some countries may be over-estimated because the indicator does not account for flood protection measures. The following 

countries are not included in the figure because these countries have no coastal zones (i.e. Austria, Czech Republic, Hungary, Luxembourg, 

Slovak Republic and Switzerland). For details on methods, see Annex A.  
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Figure 25. In the absence of coastal protections, large areas of built-up area would be at risk of 
coastal flooding in Belgium and the Netherlands 

Visualisation of built-up area in 2020 exposed to coastal flooding with a 10-, 25-, 50- and 100-year return period 

 

Note: Exposure in some countries may be over-estimated because the indicator does not account for flood protection measures. For details on 

methods, see Annex A. 

Similarly, 7 out of 45 IPAC countries shown here have more than 2% of the population potentially exposed 

to coastal flooding with a 10-year return period (Figure 26). The Netherlands is the most exposed with 49% 

of its population potentially exposed to coastal flooding with a 10-year return period, representing 

approximately 8.2 million people. It is followed by Belgium (7.5% or 0.8 million people), China (2.8% or 39 

million people) and the European Union (2.9% or 12.8 million people) (Figure 26).  
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Figure 26. A subset of countries has a sizeable part of the population potentially exposed to 
coastal flooding 

Population in 2020 exposed to coastal flooding with a 10-, 25-, 50- and 100-year return period 

 

Note: Exposure in some countries may be over-estimated because the indicator does not account for flood protection measures. The following 

countries are not included in the figure because these countries have no coastal zones (i.e. Austria, Czech Republic, Hungary, Luxembourg, 

Slovak Republic and Switzerland). Population data for 2020 is interpolated from the GHSL 2015 and 2000 population grids and will be updated 

once 2020 population data is available. For details on methods, see Annex A. 

 

. 
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5 Discussion  

This paper analyses some of the most common climate-related hazards and presents the estimated 

exposure associated with each hazard. The results suggest that there is considerable exposure of built-up 

areas, cropland, forests and the population, varying with the climate-related hazard studied. In fact, all 

countries experience one or more climate-related hazards (Figure 27). Results show significant differences 

across countries in exposure to different numbers of climate-related hazards with varying degrees of 

intensities of exposure. This is in line with the literature (Birkmann, 2015[60]). 

Figure 27. Most countries experience at least one climate-related natural hazard 

Country ranking from lowest (yellow) to highest (red) exposure to extreme temperature and precipitation, drought, 

wildfire, wind threats, river and coastal flooding; no exposure is marked green 
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Argentina 3 11 11   5 11 11 34 32 8 30 

Australia 6 13 18   3 2 5 26 26 37 30 

Austria 28 37 32   24 25 35 19 20 7 NA 

Belgium 20 15 38   4 39  6 7 20 2 

Brazil 8 6 4 5 9 7 12 44 44 32 30 

Bulgaria 18 30 24   15 10 15 42 43 33  
Canada 36 28 34    34 32 21 18 16 24 

Chile 35 47 27 13 35 9 20 27 28 27 35 

China 4 5 9 13 18 6 18 31 31 1 3 

Colombia 27 38 7 3 13 20 21 47 46 22  
Costa Rica 40 8 5 4 36 12 14   50  
Croatia 21 18 21   26 33 23 24 25 5 17 

Czech Republic 33 35 36   17 36 31 22 22 15 NA 

Denmark  45 46 11 37 29  12 13 49 5 

Estonia  43 43   31 40 27 41 41 30  
EU27 23 25 26 13 22 19 22 17 17 18 7 

Finland  44 47 13  42  40 40 9 11 

France 14 22 29   10 17 19 15 15 14 15 

Germany 24 27 35   7 22 29 8 9 19 9 

Greece 7 16 14   40 15 10 33 34 42 23 

Hungary 13 4 22   30 26 36   6 NA 

Iceland       41   1 1 48 10 

India 1 1 2    5 8 36 37 13 20 

Indonesia 30 10 1 1 33 24 25 45 45 26 12 

Ireland    50 7 39   2 2 36 25 

Israel 5 19 6    8 2   43  
Italy 16 12 15    21 17 23 23 29 14 

Japan 17 14 19 11  44 39 3 3 17 6 

Korea 12 7 20   23 27 33 9 10 21 21 

Latvia  40 42   21 37  37 35 2 13 
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Lithuania  42 41   14 41 24 28 30 35 22 

Luxembourg 31 41 39   2   10 11 40 NA 

Malta  2 25    28 16 13 12   
Mexico 22 33 8 8 19 3 3 35 36 24 29 

Netherlands 29 29 40   6 23  4 4 3 1 

New Zealand  31 45    35 38 16 14 46 30 

Norway  48 49 6    11 5 41 4 

Peru 37 32 13 2 32 43 28   25  
Poland 34 36 37 9 16 31 26 38 39 23 19 

Portugal 26 24 28   11 4 6 14 16 44 27 

Romania 19 26 23   8 13 30 43 42 11  
Saudi Arabia 2 3 3   12 45 1 46  45 16 

Slovakia 25 39 31   29 30 34 39 38 4 NA 

Slovenia 32 21 30   38 46  30 29 10  
South Africa 11 23 12   1 1 4 29 27 47  
Spain 9 17 17 13 28 18 9 18 19 38 34 

Sweden  46 48   27 32 37 25 24 28 18 

Switzerland 38 34 33   25   7 8 12 NA 

Turkey 15 20 16   20 14 7 32 33 31 28 

United Kingdom 39 49 44 9 34 38  5 6 39 8 

United States 10 9 10    16 13 20 21 34 26 

 

Note: Countries are ranked for each climate-related hazard through a series of assumptions. Extreme temperature ranking is based on the (1) 

average annual share of population exposure to hot days (Tmax > 35 °C, 2017-21), (2) average annual share of population exposure to tropical 

nights (Tmin > 20°C, 2017-21) and (3) average annual number of days with strong heat stress (UTCI > 32°C, 2017-21). Extreme precipitation 

ranking is based on the average annual share of cropland exposed to more than 7 days with extreme precipitation events (total precipitation > 

99th percentile of the reference period [1981-2010]) (2017-21). Drought ranking is based on the average cropland soil moisture anomaly 2017-

21 compared to the reference period 1981-2010. Wildfire ranking is based on the average annual percentage of population and forests located 

in wildfire-prone areas (2017-21). Wind threats ranking is based on population and built-up exposure to a violent storm or worse (wind gusts > 

28.6 m/s, 2017-21). River and coastal flooding ranking is based on the percentage of built-up area exposed to a 100-year river or coastal flood 

(2020). Climate-related hazards not applicable to countries are crossed out. These results are based on national averages and may hide more 

severe local impacts of climate-related hazards. 

Interconnected climate-related natural hazards pose considerable risk to certain countries, meaning that 

one climate-related hazard may reinforce or undermine other climate-related hazards and hence could 

exacerbate socio-economic impacts. Interconnected climate-related hazards may result in complex 

interactions, which are difficult to account for. For example, extreme temperatures are associated with 

drought conditions (Chikamoto et al., 2017[61]) (Karl et al., 2012[62]), which in turn can facilitate the 

occurrence and intensity of wildfires (Littell et al., 2016[63]). Similarly, Brazil experiences drought conditions, 

affecting croplands, suggesting an impact on the food supply. Results show that Brazil has been 

experiencing an intensification of burning between 2018 and 2020, of which part is caused by human 

activity mostly through deforestation (Pivello et al., 2021[64]). In addition, drought events have been 

associated with an intensification of fires in Brazil (Cunha et al., 2019[65]), illustrating the 

interconnectedness between climate-related hazards such as drought and wildfires in Brazil. This may 

have other socio-economic impacts not accounted for in this paper, which could include, for example, 

serious drought conditions in 2021 that are causing an energy crisis because Brazil is heavily reliant on 

hydroelectric generation (IEA, 2021[66]) (Millard and Chediak, 2021[67]). Increased occurrence and intensity 

of climate-related hazards result in greater food, water, and energy insecurity, highlighting the urgency to 

address climate change issues. 

This paper illustrates a significant impact of extreme heat events across all countries studied, indicating an 

urgent need to develop evidence-based adaptation plans. In 2017, approximately 30% of the world 

population was exposed to deadly heat (Mora et al., 2017[68]), and an estimated 54% of the world 

population is expected to be exposed to more than 20 days of dangerous heat a year by 2100 at a 2°C 

warming (Jay et al., 2021[69]). Although air conditioning is becoming more widely available around the 

world, it remains financially unaffordable for the most vulnerable communities, and is environmentally 

costly (IEA, 2018[70]). The discrepancy between cooling needs and cooling capabilities for households and 

individuals, also called the cooling gap, is a concern in the policy agenda since the effects from extreme 
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heat span from increased morbidity and hospitalisations to mental health issues, adverse pregnancy and 

birth outcomes, increased healthcare costs and political instability. For instance, recent evidence finds that 

heat extremes are related to increased mental health-related hospital admissions (Hayward and Ayeb-

Karlsson, 2021[71]) and suicide rates (Burke et al., 2018[72]). For example, suicide rates rose 0.7% and 2.1% 

respectively for a 1°C increase in monthly average temperatures in the United States counties and Mexican 

municipalities (Burke et al., 2018[72]), indicating the urgent need to address issues related to dangerous 

heat around the world. 

The different climate-related hazards selected in this paper also suggest that certain countries are more 

affected than others. For example, the indicator for extreme precipitation shows countries where 

considerable impacts are observed for extreme precipitation, suggesting that early-warning policies for 

extreme precipitation may be important in these countries. Each year severe events are well forecasted 

but a gap between forecasting and warnings of hydro-meteorological events results in casualties and 

significant damage to property and infrastructure (WMO, 2015[73]). In addition, significant gaps exist in the 

international exchange of observations on hydro-meteorological events, particularly in Least Developed 

Countries and Small Island Developing States (SIDS) (WMO, 2021[74]). In fact, Latin America and Africa 

are among the regions least equipped with dense weather station networks in the world (WMO, 2021[74]), 

even though this paper shows that at least five countries in Central and South America experience an 

extreme number of days with very heavy precipitation. 
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6 Strengths and limitations  

This paper proposes a methodology for assessing the hazard prevalence and exposure of people and 

assets (i.e. built-up areas, cropland, forests) to climate-related hazards on a national and subnational level. 

It uses data sources with high spatio-temporal resolution to assess the impact of climate-related hazards 

between countries and within countries. 

It is important to highlight that there can be over- or under-estimations of the actual exposure to climate-

related hazards. For example, the 2020 global land cover map with a 300 m spatial resolution has an 

evaluated accuracy of 70.5% on 1344 samples (Defourny et al., 2021[75]), while land cover maps with a 

100 m spatial resolution have an overall mapping accuracy of just over 80% (80.6% in 2015, 80.3% in 

2019) (Buchhorn et al., 2020[54]). This meets the statistical validation requirements according to the CEOS 

Land Product Validation but indicates that a degree of misclassification and differences between this data 

source and other data sources is likely, which may affect the results of exposure indicators that focus on 

croplands or forests.  

This paper assesses wildfires through three hazard and exposure indicators (Table 4). This includes ex-

ante and ex-post data sources to investigate areas that have burned and wildfire-prone areas. In addition, 

the data sources analysed allow filtering of fires by fire size, making it perfectly feasible to exclude ‘small’ 

fires that may be common in certain countries where managed burning is part of the cultural use and 

management of the landscape. However, the key underlying data of the Global Fire Atlas (i.e. the MODIS 

MCD614 product) has a pixel size of 25 ha (500 m spatial resolution). Considering that very few managed 

fires exceed the size of 25 ha, these fire events mostly do not get mapped in the MODIS MCD614 product, 

strengthening the case that many of these ‘prescribed’ or ‘managed’ fires can be excluded for the indicators 

developed in this paper. Nonetheless, in some countries, larger ‘managed’ fires are possible such as in 

Australia and the United States. For example, savannah burning, which occurs in northern Australia, has 

a long history of indigenous use for land management stretching back for millennia. These practises have 

exposed ecosystems to frequent fires under such managed fire regimes and traditional land management, 

and are increasingly re-introduced for Australia’s savannah fire management. These practices should be 

considered when interpreting the results since large ‘managed’ fires may not be excluded from the wildfire 

indicators for these countries. In addition, small wildfires, below the remote sensing product resolution, are 

not represented in this analysis. 
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7 Conclusions and next steps 

This paper develops exposure indicators for selected climate-related natural hazards at the national and 

subnational levels and with global geographic coverage (results shown in this paper are limited to 52 IPAC 

countries, for ease of presentation). This is achieved by summarising observations at a high spatial and 

temporal resolution, and combining these with geospatial data sources describing populations, natural 

assets or built assets. Using global data sources enables the investigation and comparison of the exposure 

to climate-related hazards within a country and between countries. 

Results show that a high proportion of the population in most IPAC countries is exposed to serious extreme 

heat conditions; this is alarming given that the number of days with extreme heat is expected to increase 

because of climate change. A majority of cropland in IPAC countries also experience a considerable 

number of days with above-average precipitation. However, only a small subset of IPAC countries’ 

cropland is exposed to more than 7 days of above-average precipitation. With regards to wildfire, a small 

subset of countries accounts for the majority of burned area. For example, 20% of burned land globally 

occurred in ten IPAC countries between 2017 and 2021. Importantly, this empirical evidence is based on 

observed past conditions and is generally expected to worsen because of climate change. 

In terms of possible future work, a similar methodology could be used to develop additional indicators, 

provided suitable hazard and asset data sources can be identified. The following additions could be 

explored in the future: 

► Other hazard types: Extensions of existing indicators such as identifying more appropriate data 

sources for assessing forest exposure to drought or cropland exposure to extreme precipitation 

during the growing season. Other climate-related hazards currently not accounted for in this paper 

may also become increasingly relevant to monitor, such as lightning strikes, landslides, hailstorm 

or snowfall events, sea level rise or ocean acidification. 

► Other asset classes: For example, % agricultural value added or employment exposed to extreme 

precipitation, % age groups or livestock exposed to heat stress; sensitive ecosystems, protected 

areas burned or exposed to wildfire; infrastructure exposed, or exposed GDP or Human 

Development Index (HDI). 

The following directions could also be explored in subsequent work to further refine and expand on the 

work developed in this paper: 

► Articulate user needs: Lack of suitable global data sources hinders the development of indicators 

for some climate-related hazards. In addition, certain existing data sources may not be ideal for 

assessing a climate-related hazard.  

► Vulnerability: Fully characterising the associated risk would require to also consider vulnerability 

of the exposed people or assets. Pending the availability of suitable data on vulnerability, this task 

remains an option for future work. Related work is planned under EPOC’s 2023-24 PWB on 

environmental justice, and related work is also envisaged for the IPAC Climate Action Dashboard. 

► Projections: This paper focuses on historical data or hazard maps based on historical events. 

Exploring climate projection data by Representative Concentration Pathways (RCP) or Shared 

Socioeconomic Pathways (SSP) would enable to assess the exposure to climate-related hazards 

under different future scenarios.  
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Annex A. Methods for each exposure indicator 

This paper does all data processing and statistics to develop exposure indicators in QGIS 2.18.2, Google 

Earth Engine, Python 3.9.6 via jupyter notebook 6.4.3 and R 4.1.0 via Rstudio using the packages base, 

doParellel, foreach, gdalUtils, ggplot2, iterators, parallel, purrr, raster, rgdal, sf, sp and ncdf4. All source 

code to compute these indicators is stored on a Github repository and will be made available upon request. 

B.1. Interpolation of population grids 

The GHSL population grids developed by the European Commission Joint Research Centre allow for the 

estimation of the residential population for target years 1975, 1990, 2000 and 2015 (Freire et al., 2016[53]). 

This is based on data from CIESIN GPWv4.10 and is further disaggregated from census or administrative 

units into grid cells with a spatial resolution of 250 m or 1 km, depending on the user need (Freire et al., 

2016[53]). This paper uses the spatial raster dataset depicting the distribution of population, expressed as 

the number of people per grid cell at a resolution of 250 meters.  

Since some of the hazard data sources have annual or monthly data between 1979 and 2021, it is desirable 

to have population data for all years between 1979 and 2021. However, the GHSL population grids are 

only available for 4 years as indicated earlier. For this reason, this paper linearly interpolates population 

data for those exposure indicators where hazard data is available on an annual or monthly level; this 

includes exposure indicators for extreme temperature, drought, wildfire and wind threats. Linear 

interpolation of population data is calculated as the below example: 

𝑃𝑂𝑃2003 =  𝑃𝑂𝑃2000 + 3 ∗ (
𝑃𝑂𝑃2005 − 𝑃𝑂𝑃2000

2005 − 2000
) 

Exposure indicators that include hazard data without a temporal component do not use population data 

that is linearly interpolated, except for the year 2020, which is based on linear interpolation from 2000 and 

2015 population grids. All exposure indicators that use population grids after 2015 will be updated as soon 

as there is a GHSL release of the 2020 population grid. 

B.2. Percentage of population exposed to extreme temperatures 

The Copernicus CDS temperature data (ERA5) is a global gridded product with a 0.25° spatial resolution 

(~ 27.75 km) containing per pixel information of daily minimum and maximum air temperature at 2 m above 

the land’s surface from 1979 to present (Hersbach et al., 2018[22]). This data source is at the basis of OECD 

and IEA calculations for the development of indicators assessing the number of hot days, tropical nights, 

icing days, and indicators assessing changing temperatures based on a climatology (IEA and CMCC, 

2022[76]). 

This paper measures temperature extremes based on an absolute threshold through a variety of indices. 

It measures hot days where the maximum daily temperature exceeds 35°C, tropical nights where the daily 

minimum temperature exceeds 20°C and icing days where the daily maximum temperature is below 0°C. 

This paper also measures days experienced as a hot day and a tropical night based on the indices above 

to develop a combined indicator and identify days that are both hot during the day and night. Finally, this 

paper also develops a heat stress indicator that accounts for other meteorological variables such as 
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humidity. There is strong experimental evidence that physiologic stress from high temperatures is greater 

if humidity is higher; however, large epidemiological models have also found little association of humidity 

with mortality due to heat stress (Armstrong et al., 2019[77]). Nevertheless, this paper includes a fifth 

indicator based on an absolute threshold to assess intense heat-related events that include other 

atmospheric variables impacting the human body besides air temperature, i.e. wind, radiation, and 

humidity. This paper estimates heat stress using the Universal Thermal Climate Index (UTCI). A UTCI 

value between 32°C and 38°C is considered as strong heat stress, between 38°C and 46°C as very strong 

heat stress, and above 46°C as extreme heat stress. The UTCI is derived from the Copernicus CDS ERA5 

thermal comfort reanalysis (ERA5-HEAT) which provides hourly UTCI since 1979 at a 0.25° spatial 

resolution (Hersbach et al., 2018[22]). A population-weighted average is computed on the number of days 

per year associated to each heat stress level (strong, very strong, and extreme) using the Global Human 

Settlement population grids. To estimate the change over time in population exposure to heat stress, this 

paper compares the average number of days per year corresponding to the different heat stress levels in 

the last 5 years with the reference period (1981-2010). 

This paper also measures temperature extremes based on a relative threshold by assessing temperature 

changes compared to the reference period (1981-2010). The core aim is to analyse changing temperature 

over time. For this reason, the paper selects a reference period from 1981 to 2010, which follows WMO 

guidelines for calculating the standard climatological normal (WMO, 2017[78]). The WMO recommends 

using a rolling 30-year period, updated every 10 years. The WMO recommends using a historical base 

period (1961-1990) for assessing climate change, as well as the most recent 30-year period, in order to 

standardise and harmonise across institutions. The commonly adopted 1961-1990 period begins before 

satellites data was commonly used and thus most datasets do not go back that far in time, including the 

Copernicus CDS temperature data used in this paper. For this reason, this paper uses the base period 

from 1981 to 2010. However, since the beginning of 2021, the recommended reference period changed 

from 1981-2010 to 1991-2020 more recently (WMO, 2017[78]) (Copernicus Climate Change Service, 

2021[79]) but this is not used in this paper because the core aim is to analyse changing temperatures over 

time as indicated earlier. 

The paper measures days with extreme heat by calculating extremely hot days where the daily maximum 

temperature6 exceeds the 95th percentile of daily maximum temperature over the whole reference period 

(i.e. 1981-2010) for a given country (Figure A.1). Similarly, this paper measures days with extreme cold by 

calculating extremely cold days when the daily minimum temperature is below the 5th percentile of daily 

minimum temperature over the reference period (i.e. 1981-2010). Percentiles are computed on a monthly 

basis, accounting all days of a specified month in the reference period. As this typically translates into 900 

data points per month, the use of a five-day window or other means for reducing the noise is not used 

here. The indicator thus accounts for seasonal temperature variability, as computing percentile thresholds 

with all days in the reference period would likely cancel extremely warm days in winter that would in 

absolute terms be less severe than an average summer day. 

                                                
6Daily minimum temperatures and daily maximum temperatures refer to the variables 24 hour minimum and maximum, 

respectively. 
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Figure A.1. Changing temperature extremes across the world 

Annual number of days when the daily maximum temperature exceeds the 95th percentile of the reference period 

(1981-2010), 2021. 

 

Note: Areas in high latitudes shown in black have no data. 

Recent evidence also suggests that temperature fluctuations cause extreme temperature-related deaths 

beyond just heatwaves (Hsiang, Meng and Cane, 2011[80]) (Burke, Hsiang and Miguel, 2015[81]) (Burke 

et al., 2018[72]). For this reason, this paper choses to measure the number of days with extreme heat and 

cold instead of extreme temperature waves such as heatwave to keep maximum granularity because the 

calculation of heatwaves excludes non-consecutive days with extreme heat.  

The GHSL population grids developed by the European Commission Joint Research Centre (JRC) allows 

for the estimation of annual number of persons exposed to the number of days with extreme heat and cold 

(Freire et al., 2016[53]). This is a spatial raster dataset depicting the distribution of population, expressed 

as the number of people per grid cell at a resolution of 250 meters. By overlaying the analysed temperature 

data with the population grid data, this paper analyses population exposure to extreme temperature. 

Populations exposed to zero days of extreme heat and cold are excluded from further analysis in this 

paper. All data to develop this indicator is freely available online and all source code to compute this 

indicator is available upon request. 

B.3. Percentage of cropland exposed to extreme precipitation 

To develop an exposure indicator for assessing extreme precipitation, this paper uses the Copernicus CDS 

precipitation data (ERA5), which is a global gridded product with a 0.25° spatial resolution (~ 27.75 km) 

containing per pixel information of hourly total precipitation amounts from 1979 to present (Hersbach et al., 

2018[22]). Through OECD and IEA calculations, it measures precipitation extremes based on a relative 

threshold by assessing precipitation changes compared to the reference period from 1981 to 2010 (IEA 

and CMCC, 2022[76]). The core aim is to analyse the exposure of croplands to changing precipitation 

amounts, particularly days with extreme precipitation events. To do this, this paper measures the total 

number of days in a given year where the total daily precipitation amount exceeds the 99th percentile of 

daily precipitation values over the whole reference period (1981-2010) for a given country. Using the 99th 
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percentile instead of a 95th percentile allows identifying particularly heavy precipitation events (ca. 4 times 

per year) and is consistent with the EEA’s methodology for assessing the frequency of extreme 

precipitation events (EEA, 2021[26]). Unlike a monthly-approach for extreme temperature, percentiles are 

computed using all wet days of the reference period (i.e. 1981-2010) because the data sample would 

otherwise be too small to robustly compute seasonally adjusted percentiles. It defines a wet day as a day 

where total precipitation is above or equal to 1 mm. Since percentiles are computed using all wet days of 

the reference period in a given location, this implies a different occurrence frequency between different 

locations. 

Figure A.2. Changing precipitation extremes across the world 

Annual number of days when the total precipitation amount exceeds the 99th percentile of the reference period 

(1981-2010), 2021. 

 

Note: Areas in high latitudes shown in black have no data. 

The Copernicus CDS global land cover data allows identifying global cropland cover at 300 m spatial 

resolution from 1992 to present with a one year delay (Defourny et al., 2021[75]). By overlaying the analysed 

precipitation data with the global cropland data, this paper measures the percentage of cropland exposed 

to extreme precipitation in days and week categories. All data to develop this indicator is freely available 

online and all source code to compute this indicator is available upon request. 

B.4. Cropland soil moisture anomaly 

Water content in the superficial layers of the soil is important for water supply and vegetation health. Soil 

moisture anomaly is a suitable indicator for monitoring the intensity of agricultural droughts and shows 

similar performances in identifying droughts compared to the Standardized Precipitation Index (Zeri et al., 

2021[32]). This paper measures agricultural droughts in terms of cropland soil moisture anomaly using the 

Copernicus CDS ERA5-Land monthly average data product. It is a global gridded product with a 0.1° 

spatial resolution (~ 11.1 km) from 1950 to present, and it provides land variables related to the energy 

and water cycles over several decades. It contains per pixel information of monthly average volume of 

water in the surface soil layer of 0 to 7 cm deep, expressed as m3 water per m3 soil (Dorigo et al., 2017[33]) 
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(Gruber et al., 2019[34]). This data source combines model data with global observations into a complete 

and consistent dataset and describes how wet or dry the soil is in its topmost layer, providing insights about 

local precipitation impacts and soil conditions.  

To develop an indicator for cropland soil moisture anomaly, this paper omits any soil moisture grid cells 

not considered cropland. To assess cropland cover, it uses the Copernicus global land cover maps at 300 

m spatial resolution for the years 2000 to present (currently available until 2020) (Defourny et al., 2021[75]). 

This paper considers the following land cover classes as cropland: (1) cropland, rainfed; (2) cropland 

irrigated or post-flooding; (3) mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) 

(<50%); and (4) mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%). 

Once soil moisture grid cells for each year are selected based on cropland land cover, it measures the 

cropland soil moisture anomaly based on the reference period (1981-2010) as used throughout the paper. 

All data to develop this indicator is freely available online and all source code to compute this indicator is 

available upon request. 

B.5. Wildfires and exposure to areas at very high risk of burning 

National inventories of wildfire events exist in many countries, but they do not provide the global coverage 

and/or the extended record needed for the validation of a fire danger system at a global scale. Satellite 

observations can supply a valid alternative, especially as they cover remote areas where in-situ 

observations are sparse. Satellite data have been used to monitor biomass burning at regional and global 

scales for more than two decades, using algorithms that detect radiative emissions from active fires at the 

time of satellite overpass, and in the last decade by using burned area algorithms that directly map the 

spatial extent of the area affected by fires. 

Burned area extent 

The Global Wildfire Information System (GWIS) is a joint initiative of the Group on Earth Observations 

(GEO) and the EU Copernicus work programmes, and is supported by partner organisations and space 

agencies such as NASA. The GWIS GlobFire database provides information on the occurrence of wildfires 

(i.e. fire events) during a month or a year and is derived from the MCD64A1 burned area product captured 

through NASA’s MODIS Terra and Aqua satellite system. Since the underlying MODIS MCD64A1 burned 

area product has a spatial resolution of 500 m (equivalent to a pixel area of 25 ha), it implies that smaller 

fire events (< 25 ha) are removed from the GlobFire database, indirectly excluding smaller fires such as 

controlled or prescribed burnings (Felipe Galizia et al., 2021[42]). This data source thus excludes small 

wildfires that may naturally occur or prescribed burnings that are kept small to prevent larger uncontrolled 

burnings. However, this does not exclude all prescribed fires. In large open territories of Australia and the 

USA, larger prescribed fires do occur. The GlobFire database defines fire events as a set of burned pixels 

that are connected within a 5-day window and that have not been burned over the 16 previous days (Artés 

et al., 2019[82]). 

In this paper, burned area extent is measured by assessing the total amount of burned land compared to 

a country’s size. Areas that burn twice or more in a given year are counted only once in the total burned 

area extent. This paper does not measure the total number of fire events because this is not robust over 

time. The detection of smaller wildfires is dependent on the availability and proper analysis of satellite 

imagery. 

Forest exposure to wildfire danger 

There are three widely used fire risk weather indices, the Canadian Fire Weather Index (FWI), the U.S. 

Forest Service National Fire-Danger Rating System and the Australian McArthur Mk5 Forest Fire Danger 

Meter. To assess the risk of wildfires or fire danger, the Fire Weather Index (FWI) System is a 

meteorologically based index used worldwide for most jurisdictions around the world (Goldammer et al., 
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2018[43]) (Field, 2020[44]). The FWI System was developed in Canada and is composed of three moisture 

codes and three fire behaviour indices. The moisture codes capture the moisture content of three 

generalised fuel classes, while the behaviour indices reflect the spread rate, fuel consumption and intensity 

of a fire if it were to start. They are based on an exponential model of moisture exchange. The Fire Weather 

Index (FWI) is a dimensionless index rating the potential fire line intensity given the meteorological 

conditions in a reference fuel type (mature pine stands) and level terrain (Manzanas et al., 2020[83]). The 

system is designed to derive the maximum amount of information from the least amount of data and for 

this reason is easily adaptable to regions outside of Canada (European Comission, 2021[84]). The FWI 

System accounts for temperature, relative humidity, wind speed, and precipitation, each taken once a day 

at noon. 

The Copernicus Land cover gridded maps from 1992 to present allow for the identification of exposed 

forest areas to areas with a very high (> 5) or extreme (> 6) fire danger based on the FWI Index (Defourny 

et al., 2021[75]).  

Population exposure to wildfire danger 

The Global Human Settlement Layer (GHSL) population grids developed by the European Commission’s 

JRC allow for the estimation of the population count present in areas with a very high (> 5) or extreme (> 

6) fire danger based on the FWI index. However, only using fire risk weather indices such as the FWI for 

assessing exposure of the population to wildfire is not good practise because these indices only account 

for meteorological conditions. Fuel or biomass availability is equally important because areas may have 

suitable fire conditions but no fuel availability for burning. Accounting for fuel or biomass availability besides 

meteorological indices is necessary to assess population exposure to wildfire.  

Since there are no publicly available global biomass layers that are updated frequently, this paper accounts 

for fuel availability by calibrating the FWI Fire Danger Rating (FDR) using corresponding historical fire 

events, assuming frequent historical fire events indicate the presence of flammable fuel. In this paper, the 

GWIS GlobFire events provide historical data to calibrate the daily FDR as follows: 

► As a preliminary step, the land cover classes (1) cropland, (2) forest, (3) grass and shrubland, (4) 

water bodies and wetlands and (5) Settlement from the Copernicus Land cover annual gridded 
maps are used to mask out non-vegetated areas from the daily FDR values (𝐹𝐷𝑅𝑑𝑄𝑖

) for each grid 

cell 𝑖. The subsequent calibration is applied for the remaining grid cells that were not removed 

from the daily FDR data. 

► To stratify the vegetated cells, biomass carbon density percentile values are used as calibration 

parameters. Percentile values were derived from the temporally consistent harmonized global 

maps of aboveground biomass carbon density for the year 2010 at a 300-m spatial resolution. 

(Spawn et al., 2020[85]). Each cell (𝑖) of the daily FDR data is assigned a vegetation-specific carbon 

density percentile value based on the global distribution of aboveground carbon density (in units of 

megagrams of carbon per hectare (MgC ha−1)). 

► The GWIS GlobFire fire events data from 2000 to 2020 is used to estimate the likelihood of the 

stratified vegetated cells to actually burn. The bi-decadal fire events data is disaggregated into 

quarterly data to account for seasonal effects; 

► For each quarter and grid cell, the number of fire events is measured to get the total number of 

fire events at a given location during a given quarter between 2000 and 2020; 

► Each grid cell (𝑖) is assigned a percentile value for each quarter of the year based on the global 

quarterly historical distribution of fire events; 

► The percentile value of each cell 𝑖 is then further adjusted to account for the mean of (1) 𝑖’s 

percentile value and (2) the percentile values of 𝑖’s neighbouring cells (n=8). 
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► Through this process, a quarterly fire ‘climatology’ layer is obtained; 

► The daily FDR values (𝐹𝐷𝑅𝑑𝑄𝑖
) for each grid cell 𝑖 are calibrated by using these quarterly fire 

climatology layers to develop a calibrated FDR value (𝐹𝐷𝑅′𝑑𝑄𝑖
) as follows: 

𝐹𝐷𝑅′𝑑𝑄𝑖,𝑖 = 𝐹𝐷𝑅𝑑𝑄𝑖,𝑖 × 𝑏𝑖𝑜𝑚𝑎𝑠𝑠. 𝑐𝑎𝑟𝑏𝑜𝑛. 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 × 𝑒𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒𝑖,𝑄𝑖 

Calibrated FDR values above a value of 5 are then considered areas at very high risk of burning, 

accounting for both meteorological variables and calibration based on historical fire events. These areas 

with a very high risk of burning are then combined with annual population grid data from GHS-POP to 

estimate the percentage of population exposed to areas at risk of burning. 

A key limitation associated with the use of historical wildfire data as a proxy for fuel availability is that 

wildfires that consume whole forest stands (stand replacing fires) have a recurrence interval between 30-

300 years. However, in some regions, the recurrence interval may be shorter. Using historical wildfire data 

from the past 20 years, as done in this paper, may lead to the omission of certain high-risk areas. 

 

B.6. Percentage of population and buildings exposed to wind threats 

The Copernicus ERA5 dataset provides hourly 10 m wind gust data (in m/s) at a 0.25° spatial resolution 

(~ 27.75 km) (Hersbach et al., 2018[22]). The NOAA wind threat scale allows for the classification of 

sustained wind speed data into different wind threat categories: (1) low wind threat (20-26 mph), (2) 

moderate wind threat (26-40 mph), (3) high wind threat (40-58 mph) (Table A.1). The Beaufort wind force 

scale also allows for the classification of wind threats. Sustained wind is slightly different from wind gusts. 

A wind gust is defined as the maximum value of the 3-second average wind speed, whereas sustained 

wind is the average wind speed over a two-minute period. This paper uses the threshold associated to 

violent storms on the Beaufort scale (64 mph, or 28.6 m/s) on the wind gust data to assess exposure to 

wind threats. Using the Copernicus wind gust data, an area is considered to be exposed to violent storms 

or worse if for at least one hour the 10 m wind gust speed is higher than 28.6 m/s. 

Table A.1. Wind scales 

Overlap between the National Oceanic and Atmospheric Administration (NOAA) wind threat scale and the Beaufort 

wind force scale 

NOAA wind threat scale  Beaufort wind force scale 

Wind threat level Wind speed (mph)  Beaufort class Wind speed (m/s) Wind speed (mph) 

Extreme > 57 

 Class 12: Hurricane > 32.7 ≥ 73 

 Class 11: Violent storm 28.5 – 32.6 64 – 72 

 Class 10: Storm, whole gale 24.5 – 28.4 55 – 63 

High 40 - 57 
 Class 9: Strong gale 20.8 – 24.4 47 – 54 

 Class 8: Fresh gale 17.2 – 20.7 39 – 46 

Moderate 26 - 40 
 Class 7: Moderate gale 13.9 – 17.1 32 – 38 

 Class 6: Strong breeze 10.8 – 13.8 25 – 31 

Low 21 - 26  
Class 5: Fresh breeze 8.0 – 10.7 19 – 24 

Very low 20 - 21  

Non-threatening < 20 

 Class 4: Moderate breeze 5.5 – 7.9 13 – 18 

 Class 3: Gentle breeze 3.4 – 5.4 8 – 12 

 Class 2: Light breeze 1.6 – 3.3 4 – 7 

 Class 1: Light air 0.3 – 1.5 1 – 3 

 Class 0: Calm < 0.3 < 1 
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Note: The NOAA wind threat level scale is a scale used to assess the local threat of wind gusts. The modern version of the Beaufort wind force 

scale consists of 13 classes representing an empirical measure that relates wind speed to observed conditions at sea or on the land. 

This paper assesses the exposure to cyclones using GAR 2015 cyclone hazard maps (UNDRR, 2019[86]). 

These maps show cyclone prone areas expressed in terms of wind gust (km/h) for different return periods 

(50, 100, 250, 500 and 1000 years). In this paper, the return period of 100 years is analysed. The Saffir-

Simpson hurricane wind scale estimates hurricane potential property damage based on sustained wind 

speeds (Table A.2). As the cyclone hazard map shows wind gust speed, the values were readjusted to 

match the Saffir-Simpson hurricane wind scale by considering that wind gust speed is around 30% higher 

than sustained wind speed. This readjustment is consistent with the Atlas of the Human Planet 2017 

(Pesaresi et al., 2017[87]).  

Table A.2. Saffir-Simpson hurricane wind scale 

Category Wind speed (m/s) Wind speed (mph) Damage intensity 

Five > 70 > 157 Very dangerous winds will produce some damage 

Four 59 – 70 130 – 156 Extremely dangerous winds will cause extensive damage 

Three 50 – 58 111 – 129 Devastating damage will occur 

Two 43 – 49 96 – 110 Catastrophic damage will occur 

One 33 – 42 74 – 95  Catastrophic damage will occur 

The GHSL population grids developed by the European Commission JRC allows for the estimation of 

population exposed to wind threats (Freire et al., 2016[53]). Similarly, the Copernicus land cover maps allow 

for the identification of exposed built-up areas, as well as croplands and forests, from 1992 to present 

(Defourny et al., 2021[75]). 

B.7. River flooding 

River floods exposure indicators were computed using JRC River Flood Hazard Maps for Europe and the 

Mediterranean Basin region, and for the World (Dottori et al., 2021[47]). The maps depict flood prone areas 

for river flood events for six different flood frequencies (from 1-in-10-years to 1-in-500-years). Cell values 

on these maps indicate the water depth (in m). For countries located in Europe and around the 

Mediterranean Basin, the regional flood hazard maps were used, as the spatial resolution is higher (100 

m) than the global maps (1 km). For the remaining countries, the global maps were used. To get flood 

prone areas, a threshold of 1 cm was applied on the water depth. 

Population exposure to river floods at different territorial levels was computed using the Global Human 

Settlement Layer Population grid linearly interpolated to 2020 based on 2000 and 2015. Built-up and 

cropland exposure was obtained using the Copernicus Land Cover gridded maps at 300 m resolution. 

B.8. Coastal flooding 

Coastal flooding hazard and exposure indicators are developed using the World Bank Global Coastal Flood 

Hazard maps (Muis et al., 2016[52]). The maps present a global reanalysis of storm surges and extreme 

sea level events based on hydrodynamic modelling. The maps depict coastal flood hazard for nine different 

frequencies of occurrence (i.e. 2, 5, 10, 25, 50, 100, 250, 500, 1000-year return period). In this paper, 

exposure indicators for coastal flooding hazards are developed with a 10, 25, 50 and 100-year return 

period.  
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Annual values of the amount of land exposed to coastal flooding hazards is measured for each country. 

Since the coastal flooding hazard maps are not updated, only four values are developed for each country 

based on the four return periods selected. 

The Copernicus Global Land Cover data allows identifying urban areas at a high spatial resolution of 300 

m from 2000 to 2020 (Defourny et al., 2021[75]). This data source is updated yearly. This paper identifies 

built-up areas using the urban area classification within the Copernicus Global Land Cover data. By 

overlaying the coastal flooding hazard maps with the Copernicus urban area data, this paper calculate the 

percentage of built-up area exposed to coastal flooding hazards for each country between 2000 and 2020.  

The GHSL population grids developed by the European Commission Joint Research Centre (JRC) allow 

for the estimation of the number of persons exposed to coastal flooding hazards per country (Freire et al., 

2016[28]). The GHSL population grids are updated each epoch and are available for the years 1975, 1990, 

2000 and 2015. By overlaying the coastal flooding hazard maps with the GHSL population grids, this paper 

calculates the percentage of the population exposed to coastal flooding hazards for each country in 1975, 

1990, 2000 and 2015. A value for 2020 is developed based on the 2015 population grid, and this will be 

updated as soon as an updated population grid for 2020 is available. All data to develop this indicator is 

freely available online and all source code to compute this indicator is available upon request. 
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Annex B. Key databases 

Table B.1. Key databases for global environmental data sources on climate-related natural hazards 

Overview of databases containing a variety of global environmental data sources relevant for assessing climate-

related natural hazards 

Source name Description 

Global Historical Climatology Network (GHCN) The GHCN is a database of daily/monthly climate summaries from land surface stations. The 
GHCN contains records from over 100,000 stations in 180 countries and territories. Both the 

record length and period of record vary by station and cover intervals ranging from less than a 

year to more than 175 years. 

Global Precipitation Climatology Project 

(GPCP) 

The GPCP provides global mean precipitation as monthly means since 1979 and as daily means 
since 1996 using microwave imagers on polar orbiting satellites and infrared imagers on 

geostationary satellites. 

Global Drought Information System (GDIS) The GDIS contains several variables and indices useful for climate related hazards, including the 

Daily Standardised Precipitation Index, the Standardised Precipitation Index, … 

World Resources Institute (WRI) Aqueduct tool The WRI Aqueduct tool contains a water risk atlas that maps and analyses current and future 

water risks across locations. 

Copernicus Climate Data Store (CDS) The CDS provides access to a wide range of climate datasets such as mean temperature, total 
precipitation or snow liquid water equivalent. It contains more than 100 climate variables with 30-

km spatial resolution, one-hour temporal resolution and with a temporal coverage of 41 years. 

Copernicus Emergency Management Service 

(CEMS) 

The CEMS provides information for selected emergency situations that arise from natural and 
man-made disasters anywhere in the world. It includes the Global Flood Awareness System 
(GloFAS) that provides global river discharge data and the Global Drought Observatory that 

provides global data on drought risk. 

Global Wildfire Information System (GWIS) The GWIS provides data on fire regimes and effects at a global level, including fire danger 
forecasting, active fire detection and rapid damange assessments. This includes a set of 

modelled fire danger using historical weather forecasts to provide a complete historical 

reconstruction of meteorological conditions favourable to the start, spread and sustainability of 

fires from 1979 to the present (EFFIS, 2019[88]).  

Fire Information for Resource Management 

System (FIRMS) developed by NASA 

FIRMS detect active fires and thermal hotspots through satellite imagery from the Moderate 
Resolution Imaging Spectroradiometer [MODIS] and Visible Infrared Imaging Radiometer Suite 

[VIIRS]). It provides a comprehensive data source of active fires including volcanoes and gas 

flares, and is therefore different from other sources that are based on modelled forecasting. 

Global Fire Emissions Database (GFED) The GFED combines satellite data on fire activity and vegetation productivity to estimate monthly 

burned area and fire emissions globally from 19978 through to the present. 

Emergency Events Database (EM-DAT) EM-DAT is an international disaster database and contains core data on the occurrence and 
effects of more than 22,000 disasters in the world from 1900 until now. It covers disasters where 

more than ten (10) or more people were killed, affected hundred (100) or more people, led to 

declaration of a state of emergency or led to call for international assistance. 

World Wide Lightning Location Network 
(WWLLN) Global Lightning Climatology and 

time series (WGLC) 

The WWLLN / WGLC repository contains global lightning stroke density and stroke power 

calculated from georeferenced stroke count data. 

Weather for Energy Tracker developed by the 

International Energy Agency (IEA) 

The Weather for Energy Tracker showcases weather-related data useful to understand, analyse 
and model the energy sector. This includes, for example, data on temperature, precipitation and 

wind speed (IEA and CMCC, 2022[76]).  

International Best Track Archive for Climate 

Stewardship (IBTrACS) 

The IBTrACS provides a location for tropical cyclone position and intensity information. This 
includes information on maximum sustained wind speed (knots), minimum central pressure 

(millibars) and storm centre of circulation (degrees lat/long). 

FloodList database The FloodList database archives over 2,200 flood events from early 2016 to date at a daily and 

global scale 
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Annex C. Excluded domains or subdomains 

This section describes in more detail the (sub-)domains that are excluded from the analysis in this paper 

because (i) the (sub-)domain does not have any global data sources relevant to this analysis or (ii) the 

identified data sources for this (sub-)domain are not considered appropriate for developing an exposure 

indicator for the respective climate-related hazard. For example, this paper did not identify appropriate data 

sources for assessing landslides, with exception of the landslide event variable within the International 

Disaster database, which does not allow for the development of an exposure indicator for landslide events. 

C.1. Wet and dry 

Lightning 

Lightning is a risk to person and property and plays an important role in the Earth system. In addition, it is 

the key non-anthropogenic cause of wildfire ignitions (Kaplan and Lau, 2021[89]). Lightning activity is 

expected to change due to climate change (Price, 2009[90]). 

The International Space Station (ISS) Science Data provides data on lightning and lightning density using 

the Lightning Imaging Sensor (LIS). It detects the distribution and variability of total lightning occurring in 

the Earth’s tropical and subtropical regions but does not cover higher latitudes. The sensor, mounted on 

the orbiting space station, cannot detect lightning across the entire globe simultaneously. The LIS 

instrument makes measurements during both day and night with high detection efficiency. 

The World Wide Lightning Location Network (WWLLN) provides a global dataset on lightning density, 

mean, median and standard deviation of stroke power through the Global Lightning Climatology gridded 

dataset. This data is available at 5 arc-min spatial resolution with daily and monthly temporal resolution 

from 2010 until 2020. The dataset is updated every year (Kaplan and Lau, 2021[89]) and appears to be 

better than other sensors at detecting lightning when lightning is rare (e.g. during cold seasons or in places 

with low overall density). This means that the technology behind WWLLN may be appropriate for producing 

a consistent picture of lightning that is not influenced by sensor proximity. In contrast to satellite-based 

lightning sensors, a key limitation of the WWLLN dataset is that it is not homogenous in time and space, 

including when it comes to variations in the density of the WWLLN sensor network. 

Landslides 

Landslides are an important climate-related hazard with consequences human settlements and health, 

resulting in potential environmental and economic damage and loss of human life. Landslides are often 

accompanied by heavy rains or droughts, which is why it is classified in this paper as part of the domain 

‘Wet and dry’. Landslides can develop when a mixture of water, rock, earth or other debris mixes in the 

ground. However, some landslides can also be the result of earthquakes or volcanic eruptions.  

The International Disaster Database, also called EM-DAT database, records landslide events (e.g. 

avalanche of snow, debris, mudflow or rock fall). This data is not georeferenced but does contain the 

country, region and date of the landslide event. This data source could be used for the development of an 

estimation of the number of landslide events but is less useful for the development of an exposure indicator 

because the data is not georeferenced. 



ENV/WKP(2022)13  77 

  
Unclassified 

C.2. Snow and ice 

Snowfall 

Changes in snow conditions because of climate change are important for several sectors including water 

management and winter tourism. Snowfall is only relevant to particular OECD countries and data is often 

limited. 

The liquid water equivalent (LWE) of snow is the amount of water it contains regardless of its depth or 

density. LWE reflects how deep the water in snow would be if melted. Thus, LWE allows for easier and 

more direct comparison between light and heavy snow. This measure gives information about the potential 

impact embedded by a given snow amount. 

Hail storm 

Hail storms are damaging climate-related hazards, particularly for agriculture due to damage of crops, and 

damages to other vehicles, buildings and other infrastructures. Therefore, information on hail storms can 

be valuable to a wide range of applications. 

The International Disaster Database, also called the EM-DAT database, records hail storm events. The 

category ‘convective storm’ has a subcategory relevant to hail storms. This data is not georeferenced, but 

does contain the country, region and date of the hail storm event. This data source could be used for the 

development of an estimation of the number of hail storm events but is less useful for the development of 

an exposure indicator because the data is not georeferenced.  

C.3. Oceanic 

Climate-related hazards occurring on the coast are often interconnected with broader processes in the 

ocean (OECD, 2019[49]) (OECD, 2021[48]). This can include, for example, changes to sea surface 

temperature, ocean acidification, ocean heat content, ocean salinity and sea level. However, each of the 

climate-related hazards in oceans has different effects upon society and the economy. For example, 

changes in ocean sea level can have a direct impact on communities in low-lying coastal regions, while 

ocean acidification can impact coral reefs and other ocean habitats, resulting in changes in ocean 

productivity or tourism revenues. In addition, these climate-related hazards originate in oceans, and may 

not necessarily affect all OECD countries equally.  

Despite an increasing availability of ocean data from platforms such as the Copernicus Marine Service and 

the NOAA, data coverage and issues with delineating administrative boundaries in oceans do not yet allow 

producing representative indicators in ways similar to those developed in this paper.  
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Annex D. Additional figures 

Figure D.1. A majority of countries experience some exposure to hot days and tropical nights 

Percentage of population exposed to n number of days identified as a hot day (Tmax > 35°C) and a tropical night (Tmin 

> 20°C) over the years 2017-2021 

 

Note: Countries are ranked according to the share of population exposed to any number of days identified both as a hot day and a tropical night. 

Further details on the methods are available in Annex A. 

 


	Abstract
	Résumé
	Acknowledgements
	Executive summary
	1 Introduction
	2 Conceptual framework for measuring climate-related risks
	2.1. Climate-related hazards
	2.2. Defining a hazard’s risk

	3 Data and methods
	3.1. Identification of robust data sources
	3.2. Impacts and measurement of climate-related hazards
	Heat and cold
	Frequency of extreme temperature events

	Wet and dry
	Frequency of extreme precipitation days
	Droughts
	Wildfires

	Wind
	River flooding
	Coastal flooding

	3.3. Selected exposure indicators for climate-related hazards

	4 Results
	4.1. Extreme temperature
	Hot days and tropical nights
	The Universal Thermal Climate Index
	Changing extreme temperatures

	4.2. Extreme precipitation
	4.3. Drought
	Soil moisture anomaly

	4.4. Wildfire
	Burned area extent
	Forest exposure to wildfire danger
	Population exposure to wildfire danger

	4.5. Wind threats
	Storms
	Cyclones

	4.6. River flooding
	4.7. Coastal flooding

	5 Discussion
	6 Strengths and limitations
	7 Conclusions and next steps
	References
	Annex A. Methods for each exposure indicator
	B.1. Interpolation of population grids
	B.2. Percentage of population exposed to extreme temperatures
	B.3. Percentage of cropland exposed to extreme precipitation
	B.4. Cropland soil moisture anomaly
	B.5. Wildfires and exposure to areas at very high risk of burning
	B.6. Percentage of population and buildings exposed to wind threats
	B.7. River flooding
	B.8. Coastal flooding
	Annex B. Key databases
	Annex C. Excluded domains or subdomains

	C.1. Wet and dry
	Lightning
	Landslides

	C.2. Snow and ice
	Snowfall
	Hail storm

	C.3. Oceanic
	Annex D. Additional figures



